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  Recent 3D AMP implementations

Skyrme: M. Bender, P.-H. Heenen, Phys. Rev. C 78, 024309 (2008)
- Particle number and angular momentum restoration of intrinsic 
LN states.

Relativistic: J.M. Yao et al., Phys. Rev. C 81, 04431 (2010)
- Angular momentum restoration of intrinsic HFB states.

Gogny: T.R.R., J.L. Egido, Phys. Rev C 81, 064323 (2010)
- Particle number and angular momentum restoration of PN-VAP 
states.
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�;NZ;β�
γ

�
� + ε

IKK�;NZ
DD [Φ(β, γ),Φ�(β�

, γ
�)]

|IMK;NZ;βγ� = 2I + 1

8π2

�
DI∗

MK(Ω)R̂(Ω)P̂N P̂Z |Φ(β, γ)�dΩ

2. Applications

1. Theoretical 
framework

3. Conclusions and 
outlook



CONTENTS

Tomás R. Rodríguez3D angular momentum and particle number restored calculationsCEA-Saclay, Sept 2011

Theoretical Framework

|IM ;NZσ� =
�

Kβγ

f I;NZ,σ
Kβγ |IMK;NZ;βγ�• Final GCM states

• Intermediate Particle Number and Angular Momentum Projected 
states

• Initial intrinsic states: PN-VAP δEN,Z
�
Φ̄(β, γ)

�����
Φ̄=Φ

= 0

E
N,Z [Φ] =

�Φ|Ĥ2bP̂
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  Effective nucleon-nucleon interaction: 
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  Prescriptions:

ρNZ

H
(�r) ≡ �Φ|ρ̂(�r)PNPZ |Φ�

�Φ|PNPZ |Φ�
ρNZ
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• Gamma bands and gamma softness in the low energy spectra
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FIG. 3. (Color online) Orientations of the intrinsic deformation
as a function of the γ parameter. γ = 0◦, 120◦, 240◦ and γ =
60◦, 180◦, 300◦ correspond to axial symmetric prolate and oblate
shapes, respectively.

sufficient to get eigenstates of the particle number operators.
Naturally, the best candidate to check the convergence of the
angular momentum projection is the expectation value of the
total angular momentum operator Î 2, which, by considering
Eq. (5), must be

〈Î 2〉IK =
∫
DI∗

KK (")〈#|Î 2R̂(")P NP Z|#〉d"
∫
DI∗

KK (")〈#|R̂(")P NP Z|#〉d"
= h̄2I (I + 1).

(24)

The convergence in the number of integration points depends
on three factors, namely the orientation of the intrinsic axes,
the values of (I,K), and the deformation β. Let us start
with the two latter factors. In Fig. 4 we plot the mean value
of the total angular momentum operator as a function of β
for projected wave functions with I = 2, 6 and a fixed value
of γ = 50◦. The integration has been performed with two
sets of integration points in (a, b, c), S1 = (6, 16, 12) and
S2 = (16, 16, 32). Here, we can observe that for the set S2
the correct result of the eigenvalue is obtained for all β and
I,K . However, the set S1 fails both for large values of β for
all I,K and also for smaller deformations with high K = 4, 6.
The poor performance of this choice is clearly seen in the latter
case where substantial deviations from the correct number are
observed. Therefore, as a rule of thumb, the larger the values
of (I,K) and β the more integration points are needed to
have good results. The final choice will be the one that is
able to provide converged results for all (I,K,β, γ ) values.
Taking into account that the symmetry axis corresponds to pure
K = 0 states, one may assume that close to the symmetry
axis only small K components are present. We therefore
examine the role of the orientation of the intrinsic axes in
the PNAMP method. First, we explore the convergence of
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FIG. 4. (Color online) Expectation values of the total angular
momentum operator calculated with angular momentum projected
states |IK〉 as a function of the β deformation (γ = 50◦) and for
different sets of integration points in the Euler angles (a, b, c) [red
circles, S2 = (16, 16, 32); black filled boxes, S1 = (6, 16, 12)]. The
top and bottom panels correspond to I = 2 and I = 6, and their
corresponding K values, respectively.

the angular momentum projection using the property given in
Fig. 3 and projecting symmetric states with the same value
of β but with γ ′ = 120◦ + γ . If our assumption is right, we
could reduce the number of integration points using instead of
a given wave function an equivalent intrinsic wave function
with an orientation closer to the K = 0 case. In Fig. 5 we
plot as a function of β the expectation values of the angular
momentum operator for intrinsic states with γ = 50◦ and also
with γ ′ = 170◦. The sets of integration points are the same as in
Fig. 4. For the set S1 with γ = 50◦ we observe again the loss of
convergence whenever β and I increase. However, very much
improved results are obtained for the same set of integration
points, S1, but projecting the wave functions with the γ = 170◦

orientation. In addition, the calculation with the set S2 reveals
the numerical origin of the lack of convergence for the set S1
with γ = 50◦. Therefore, we will use this property to define
the mesh in the (β, γ ) plane for performing GCM-PNAMP
calculations as we will see in the following.

The analysis shown in Figs. 4 and 5 has been performed
with diagonal matrix elements. Since in the GCM calculations
we have to consider also nondiagonal matrix elements, we have
extended our study to this case. We find that to ensure a good
convergence in all cases, the final set of integration points
in the Euler angles has to be chosen as (Na = 8, Nb = 16,
Nc = 16). We can also exploit the degeneracy illustrated in
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sufficient to get eigenstates of the particle number operators.
Naturally, the best candidate to check the convergence of the
angular momentum projection is the expectation value of the
total angular momentum operator Î 2, which, by considering
Eq. (5), must be
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The convergence in the number of integration points depends
on three factors, namely the orientation of the intrinsic axes,
the values of (I,K), and the deformation β. Let us start
with the two latter factors. In Fig. 4 we plot the mean value
of the total angular momentum operator as a function of β
for projected wave functions with I = 2, 6 and a fixed value
of γ = 50◦. The integration has been performed with two
sets of integration points in (a, b, c), S1 = (6, 16, 12) and
S2 = (16, 16, 32). Here, we can observe that for the set S2
the correct result of the eigenvalue is obtained for all β and
I,K . However, the set S1 fails both for large values of β for
all I,K and also for smaller deformations with high K = 4, 6.
The poor performance of this choice is clearly seen in the latter
case where substantial deviations from the correct number are
observed. Therefore, as a rule of thumb, the larger the values
of (I,K) and β the more integration points are needed to
have good results. The final choice will be the one that is
able to provide converged results for all (I,K,β, γ ) values.
Taking into account that the symmetry axis corresponds to pure
K = 0 states, one may assume that close to the symmetry
axis only small K components are present. We therefore
examine the role of the orientation of the intrinsic axes in
the PNAMP method. First, we explore the convergence of
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FIG. 4. (Color online) Expectation values of the total angular
momentum operator calculated with angular momentum projected
states |IK〉 as a function of the β deformation (γ = 50◦) and for
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top and bottom panels correspond to I = 2 and I = 6, and their
corresponding K values, respectively.

the angular momentum projection using the property given in
Fig. 3 and projecting symmetric states with the same value
of β but with γ ′ = 120◦ + γ . If our assumption is right, we
could reduce the number of integration points using instead of
a given wave function an equivalent intrinsic wave function
with an orientation closer to the K = 0 case. In Fig. 5 we
plot as a function of β the expectation values of the angular
momentum operator for intrinsic states with γ = 50◦ and also
with γ ′ = 170◦. The sets of integration points are the same as in
Fig. 4. For the set S1 with γ = 50◦ we observe again the loss of
convergence whenever β and I increase. However, very much
improved results are obtained for the same set of integration
points, S1, but projecting the wave functions with the γ = 170◦

orientation. In addition, the calculation with the set S2 reveals
the numerical origin of the lack of convergence for the set S1
with γ = 50◦. Therefore, we will use this property to define
the mesh in the (β, γ ) plane for performing GCM-PNAMP
calculations as we will see in the following.

The analysis shown in Figs. 4 and 5 has been performed
with diagonal matrix elements. Since in the GCM calculations
we have to consider also nondiagonal matrix elements, we have
extended our study to this case. We find that to ensure a good
convergence in all cases, the final set of integration points
in the Euler angles has to be chosen as (Na = 8, Nb = 16,
Nc = 16). We can also exploit the degeneracy illustrated in
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FIG. 5. (Color online) Expectation values of the total angular
momentum operator between angular momentum projected states
I = 0, 2, 4, 6, 8; K = 0 and I = 3; K = 2 as a function of the β

deformation and for different sets of integration points in the
Euler angles and orientation of the intrinsic axes [red circles,
S2 = (16, 16, 32); black filled boxes, S1 = (6, 16, 12) with γ = 50◦;
blue filled diamonds, S1 = (6, 16, 12) with γ = 170◦].

Fig. 3 to perform a consistency test of the implementation of
the PNAMP method [47]. By using symmetry properties of
the point group D2 it can be shown, in the notation of Eq. (2),
that

〈IMK; NZ; βγ = 60◦|Ĥ |IMK; NZ; βγ = 60◦〉
〈IMK; NZ; βγ = 60◦|IMK; NZ; βγ = 60◦〉

= 〈I00; NZ; βγ = 180◦|Ĥ |I00; NZ; βγ = 180◦〉
〈I00; NZ; βγ = 180◦|I00; NZ; βγ = 180◦〉

; (25)

that is, the projected energy calculated with a HFB wave
function with γ = 60◦ is independent of K and equal to
the projected energy calculated with the HFB wave function
with γ = 180◦. A similar relation applies for the transition
probabilities. In Fig. 6 we show the excitation energies and
reduced transition probabilities B(E2) calculated with the
same oblate axially symmetric wave function (β = 0.625)
but oriented differently in space with γ = 60◦ (left panel)
and γ = 180◦ (right panel). As expected, we find that the
γ = 60◦ excitation spectrum and transition probabilities are
independent of K and therefore identical to the mixed ones. A
look to the right panel corroborates also that these quantities
coincide with the ones generated with the γ = 180◦ intrinsic
wave function. Once we have analyzed the convergence and
consistency of the PNAMP method for a given point in the
(β, γ ) plane we can study the potential energy surfaces for the
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FIG. 6. (Left) Excitation energies and B(E2) (in e2 fm4 units)
values for the states before and after K mixing, |IMK〉 and
|IM〉, respectively, with β = 0.625 and γ = 60◦. (Right) Excitation
energies and BE(2) values for the state |IMK = 0〉 with β = 0.625
and γ = 180◦.

different approaches (VAP-PN and PNAMP with and without
K mixing). We explore first the role of the mesh of points
needed to cover all different triaxial shapes. Given the better
convergence properties for wave functions with a large K = 0
component (compare Fig. 5), we divide the calculation into
two regions, γ ∈ [0◦, 30◦] and γ ∈ [150◦, 180◦] (see Fig. 7).
The last interval is equivalent to γ ∈ [30◦, 60◦] and we will
transform the results to it whenever we plot the different PESs
throughout this paper. Furthermore, the resolution of the PES is
affected by the way we perform the discretization of the plane.
In the lower panels of Fig. 7 we show the VAP-PN energy
surfaces for a constant step division both in β and γ directions
(left part) and for a division based on equilateral triangles (right
part). The number of points is Npoints = 99 in both cases. We
observe that the distribution of the points in constant steps is
not the best choice either for small β, where for many points
almost degenerated states are obtained, or for large β, where a
loss of resolution in γ is observed for increasing values of β.
It is precisely in this region where the interpolation between
distant points produces artifacts or wrong results in the PES
such as spurious oscillations, as for example in the region
(β ∈ [1.0, 1.2], γ ∈ [20◦, 40◦]) or softening of the contour
plots (β ∈ [0.6, 1.1], γ ∈ [50◦, 60◦]). This is rectified with
a discretization based on triangles and the results presented
hereafter are calculated with this mesh. Nevertheless, although
only small differences around the minimum of the PES are
obtained in the case of 24Mg, these effects will be enhanced
for rather γ -soft and moderate β deformed nuclei. In those
cases, the division based on triangles will give much better
results for the same number of total points included in the
calculation and will save computing time with respect to the
other mesh.

V. TRIAXIAL CALCULATIONS FOR 24Mg

In the previous sections we have studied several aspects
needed to ensure good performance of the full generator
coordinate method with the particle number and triaxial
angular momentum projected wave functions. This previous
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that is, the projected energy calculated with a HFB wave
function with γ = 60◦ is independent of K and equal to
the projected energy calculated with the HFB wave function
with γ = 180◦. A similar relation applies for the transition
probabilities. In Fig. 6 we show the excitation energies and
reduced transition probabilities B(E2) calculated with the
same oblate axially symmetric wave function (β = 0.625)
but oriented differently in space with γ = 60◦ (left panel)
and γ = 180◦ (right panel). As expected, we find that the
γ = 60◦ excitation spectrum and transition probabilities are
independent of K and therefore identical to the mixed ones. A
look to the right panel corroborates also that these quantities
coincide with the ones generated with the γ = 180◦ intrinsic
wave function. Once we have analyzed the convergence and
consistency of the PNAMP method for a given point in the
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different approaches (VAP-PN and PNAMP with and without
K mixing). We explore first the role of the mesh of points
needed to cover all different triaxial shapes. Given the better
convergence properties for wave functions with a large K = 0
component (compare Fig. 5), we divide the calculation into
two regions, γ ∈ [0◦, 30◦] and γ ∈ [150◦, 180◦] (see Fig. 7).
The last interval is equivalent to γ ∈ [30◦, 60◦] and we will
transform the results to it whenever we plot the different PESs
throughout this paper. Furthermore, the resolution of the PES is
affected by the way we perform the discretization of the plane.
In the lower panels of Fig. 7 we show the VAP-PN energy
surfaces for a constant step division both in β and γ directions
(left part) and for a division based on equilateral triangles (right
part). The number of points is Npoints = 99 in both cases. We
observe that the distribution of the points in constant steps is
not the best choice either for small β, where for many points
almost degenerated states are obtained, or for large β, where a
loss of resolution in γ is observed for increasing values of β.
It is precisely in this region where the interpolation between
distant points produces artifacts or wrong results in the PES
such as spurious oscillations, as for example in the region
(β ∈ [1.0, 1.2], γ ∈ [20◦, 40◦]) or softening of the contour
plots (β ∈ [0.6, 1.1], γ ∈ [50◦, 60◦]). This is rectified with
a discretization based on triangles and the results presented
hereafter are calculated with this mesh. Nevertheless, although
only small differences around the minimum of the PES are
obtained in the case of 24Mg, these effects will be enhanced
for rather γ -soft and moderate β deformed nuclei. In those
cases, the division based on triangles will give much better
results for the same number of total points included in the
calculation and will save computing time with respect to the
other mesh.

V. TRIAXIAL CALCULATIONS FOR 24Mg

In the previous sections we have studied several aspects
needed to ensure good performance of the full generator
coordinate method with the particle number and triaxial
angular momentum projected wave functions. This previous
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B. Configuration mixing calculations for 24Mg

The final step in the calculation of the spectrum is the
GCM-PNAMP method, in which simultaneous mixing of the

TABLE I. β and γ coordinates of the triaxial PNAMP minima
after K mixing as well as excitation energies and distribution of
K components [i.e., |HI ; NZ;σ

K (β, γ )|2 see Eq. (22) and following] as
a function of Iπ

σ . The values of (β, γ )min may not coincide exactly
with those of Fig. 8 because of the finite size of the grid used in
the calculations. The quoted values are the actual ones used in the
K-mixing calculation. The K = ±6, ±8 components, not shown, are
exactly zero. The highest components are printed in boldface.

I+
σ (β, γ ◦)min Emin (MeV) K = 0 K = ±2 K = ±4

0+
1 (0.696, 8.95) 0.000 1.000 – –

2+
1 (0.696, 8.95) 1.311 1.000 0.000 –

2+
2 (0.696, 8.95) 5.556 0.000 0.500 –

3+
1 (0.696, 8.95) 6.695 0.000 0.500 –

4+
1 (0.661, 19.1) 4.129 1.000 0.000 0.000

4+
2 (0.661, 19.1) 8.116 0.000 0.500 0.000

5+
1 (0.661, 19.1) 9.883 0.0000 0.499 0.001

6+
1 (0.545, 23.4) 8.471 0.997 0.001 0.000

6+
2 (0.545, 23.4) 12.139 0.002 0.497 0.002

7+
1 (0.545, 23.4) 14.645 0.000 0.498 0.002

8+
1 (0.545, 23.4) 15.401 0.924 0.036 0.002

different deformations (β, γ ) and K components is performed
[see Eq. (1)]. As we mentioned in Sec. II A, we have to solve
the HWG equations separately for each value of the angular
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- Minimum displaced to triaxial shapes.

- Projection onto odd I angular momentum

-Softening of PES with increasing I.

- Difference between triaxial minimum and 
axial saddle point of
~ 0.7 MeV (0+) 
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FIG. 7. (Color online) Mesh of
points using constant step in β and γ

in degrees (top left) or triangle divi-
sion (top right) and the corresponding
calculated VAP-PN potential energy
surfaces (lower panels) transformed to
the interval γ ε[0◦, 60◦]. The energy is
normalized to the minimum of the PES
(−196.01 MeV) and the contour lines
are divided in 1-MeV (black dashed
lines) and 2-MeV steps (continuous
magenta lines).

research is important because the full GCM-PNAMP calcula-
tion is very demanding of CPU time and both convergence
tests and the choice of the relevant parameters should be
performed in advance, but nonetheless also checked afterward.
In this section the final results for 24Mg are presented; their
calculation has been done with the set of integration points
in the Euler angles (Na = 8, Nb = 16, Nc = 16). We choose
the triangular mesh with Npoints = 99 shown in Fig. 7 to solve
the constrained particle number projection before the variation
(VAP-PN) equations. The intrinsic many-body wave functions
|$(β, γ )〉 are expanded in a Cartesian harmonic oscillator
basis and the number of spherical shells included in this basis is
Nshells = 7 with an oscillator length of b = 1.01A1/6. In Fig. 7
the VAP-PN energy landscape is plotted, showing a single
and well-defined minimum at β = 0.5, γ = 0◦ separated by
∼7.7 MeV from the spherical point and ∼6.1 MeV from the
oblate saddle point at β = 0.25. These results are consistent
with the ones obtained in the axial calculation (see Fig. 1)
with the difference of having a saddle point in the (β, γ ) plane
instead of a minimum on the oblate side. Similar PESs are
obtained for Skyrme (HFB with PN-PAV included) [47] and
relativistic (BCS without PNP) [48] interactions, although a
softer surface between the spherical point and the minimum is
obtained for the Skyrme interaction.

A. Triaxial PNAMP potential energy surfaces
and the RVAMPIR approach for 24Mg

The solution of the triaxial HWG equation, Eq. (13), does
not require us to perform a separate angular momentum
projection in the laboratory system for each component of the
GCM basis states in the sense of Eq. (22). However, as in the
axial case, we expect the PNAMP potential energy surfaces to
provide insight and a better interpretation of the configuration
mixing calculations. We can also separate the energy gain
resulting from the triaxial AMP from the one from the (β, γ )

configuration mixing. Furthermore, they are very important
because the minima of these PESs determine the associated
RVAMPIR solution. The PNAMP is an involved approach that
requires the solution of the HWG equation, Eq. (23), to include
the K mixing. The HWG eigenstates, Eq. (22), provide real
eigenstates of the symmetry operators that can be used, as we
shall see in the following, to generate energy spectra and to
calculate transition probabilities.

In Fig. 8 we plot the normalized PNAMP energy landscapes
in the (β, γ ) plane for the lowest eigenvalue in the K space
for each angular momentum I = 0+

1 –8+
1 [see Eq. (23)]. In

addition, all the points close to the spherical one, and those
close to axiality for odd values of I , have been removed for
I %= 0 because their norm is very small. The first noticeable
aspect is that the VAP-PN axial minimum of Fig. 7 becomes
a saddle point, the minimum being displaced toward larger
β values and γ > 0◦ for all values of the angular momentum,
although the barriers between the new minima and the axial
prolate saddle points are less than 1 MeV. For I = 0+

1 , 2+
1

the minima are located in (β ∼ 0.7, γ ∼ 10◦) whereas with
increasing value of the angular momentum we observe a
softening of the PES and a displacement of the minimum
to larger γ and smaller β deformation, (β ∼ 0.65, γ ∼ 15◦)
for I = 4+

1 , 5+
1 and (β ∼ 0.55, γ ∼ 17◦) for I = 6+

1 , 7+
1 , 8+

1 .
We also note that in the case of odd-I values the softening
of the PES is in the γ direction toward the oblate saddle
point. The energy difference between the VAP-PN and the
I = 0+

1 minima is ∼4.6 MeV but the gain in energy owing
to the inclusion of the triaxial degree of freedom (i.e, the
difference between the triaxial minimum and the axial saddle
point) is ∼0.7 MeV. Similar results have been reported with
Skyrme and relativistic interactions although these studies of
the PNAMP PES only extend to I = 0, 2 and the effect of
increasing triaxiality with growing angular momentum has
not been analyzed.

For an interpretation of the configuration mixing calcula-
tions it has become customary to plot the diagonal matrix
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research is important because the full GCM-PNAMP calcula-
tion is very demanding of CPU time and both convergence
tests and the choice of the relevant parameters should be
performed in advance, but nonetheless also checked afterward.
In this section the final results for 24Mg are presented; their
calculation has been done with the set of integration points
in the Euler angles (Na = 8, Nb = 16, Nc = 16). We choose
the triangular mesh with Npoints = 99 shown in Fig. 7 to solve
the constrained particle number projection before the variation
(VAP-PN) equations. The intrinsic many-body wave functions
|$(β, γ )〉 are expanded in a Cartesian harmonic oscillator
basis and the number of spherical shells included in this basis is
Nshells = 7 with an oscillator length of b = 1.01A1/6. In Fig. 7
the VAP-PN energy landscape is plotted, showing a single
and well-defined minimum at β = 0.5, γ = 0◦ separated by
∼7.7 MeV from the spherical point and ∼6.1 MeV from the
oblate saddle point at β = 0.25. These results are consistent
with the ones obtained in the axial calculation (see Fig. 1)
with the difference of having a saddle point in the (β, γ ) plane
instead of a minimum on the oblate side. Similar PESs are
obtained for Skyrme (HFB with PN-PAV included) [47] and
relativistic (BCS without PNP) [48] interactions, although a
softer surface between the spherical point and the minimum is
obtained for the Skyrme interaction.

A. Triaxial PNAMP potential energy surfaces
and the RVAMPIR approach for 24Mg

The solution of the triaxial HWG equation, Eq. (13), does
not require us to perform a separate angular momentum
projection in the laboratory system for each component of the
GCM basis states in the sense of Eq. (22). However, as in the
axial case, we expect the PNAMP potential energy surfaces to
provide insight and a better interpretation of the configuration
mixing calculations. We can also separate the energy gain
resulting from the triaxial AMP from the one from the (β, γ )

configuration mixing. Furthermore, they are very important
because the minima of these PESs determine the associated
RVAMPIR solution. The PNAMP is an involved approach that
requires the solution of the HWG equation, Eq. (23), to include
the K mixing. The HWG eigenstates, Eq. (22), provide real
eigenstates of the symmetry operators that can be used, as we
shall see in the following, to generate energy spectra and to
calculate transition probabilities.

In Fig. 8 we plot the normalized PNAMP energy landscapes
in the (β, γ ) plane for the lowest eigenvalue in the K space
for each angular momentum I = 0+

1 –8+
1 [see Eq. (23)]. In

addition, all the points close to the spherical one, and those
close to axiality for odd values of I , have been removed for
I %= 0 because their norm is very small. The first noticeable
aspect is that the VAP-PN axial minimum of Fig. 7 becomes
a saddle point, the minimum being displaced toward larger
β values and γ > 0◦ for all values of the angular momentum,
although the barriers between the new minima and the axial
prolate saddle points are less than 1 MeV. For I = 0+

1 , 2+
1

the minima are located in (β ∼ 0.7, γ ∼ 10◦) whereas with
increasing value of the angular momentum we observe a
softening of the PES and a displacement of the minimum
to larger γ and smaller β deformation, (β ∼ 0.65, γ ∼ 15◦)
for I = 4+

1 , 5+
1 and (β ∼ 0.55, γ ∼ 17◦) for I = 6+

1 , 7+
1 , 8+

1 .
We also note that in the case of odd-I values the softening
of the PES is in the γ direction toward the oblate saddle
point. The energy difference between the VAP-PN and the
I = 0+

1 minima is ∼4.6 MeV but the gain in energy owing
to the inclusion of the triaxial degree of freedom (i.e, the
difference between the triaxial minimum and the axial saddle
point) is ∼0.7 MeV. Similar results have been reported with
Skyrme and relativistic interactions although these studies of
the PNAMP PES only extend to I = 0, 2 and the effect of
increasing triaxiality with growing angular momentum has
not been analyzed.

For an interpretation of the configuration mixing calcula-
tions it has become customary to plot the diagonal matrix

064323-9

2. Applications

1. Theoretical 
framework

3. Conclusions and 
outlook



CONTENTS

Tomás R. Rodríguez3D angular momentum and particle number restored calculationsCEA-Saclay, Sept 2011

Selection of the mesh. Resolution.

Theoretical Framework
 Third step: Configuration mixing within the framework of the Generator 
Coordinate Method (GCM). K and deformation mixing

TRIAXIAL ANGULAR MOMENTUM PROJECTION AND . . . PHYSICAL REVIEW C 81, 064323 (2010)

0

10

20

30

40

50

60

!

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

10

20

30

40

50

60

γ

ββ
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

10

20

30

40

50

60

!

β
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

10

20

30

40

50

60

γ

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

30°150°

180° 0°
-1.2 -0.8 -0.4 0 0.4 0.8 1.2

β

30°150°

180° 0°
-1.2 -0.8 -0.4 0 0.4 0.8 1.2

β

PN-VAP PN-VAPVAP-PN VAP-PN

FIG. 7. (Color online) Mesh of
points using constant step in β and γ

in degrees (top left) or triangle divi-
sion (top right) and the corresponding
calculated VAP-PN potential energy
surfaces (lower panels) transformed to
the interval γ ε[0◦, 60◦]. The energy is
normalized to the minimum of the PES
(−196.01 MeV) and the contour lines
are divided in 1-MeV (black dashed
lines) and 2-MeV steps (continuous
magenta lines).

research is important because the full GCM-PNAMP calcula-
tion is very demanding of CPU time and both convergence
tests and the choice of the relevant parameters should be
performed in advance, but nonetheless also checked afterward.
In this section the final results for 24Mg are presented; their
calculation has been done with the set of integration points
in the Euler angles (Na = 8, Nb = 16, Nc = 16). We choose
the triangular mesh with Npoints = 99 shown in Fig. 7 to solve
the constrained particle number projection before the variation
(VAP-PN) equations. The intrinsic many-body wave functions
|$(β, γ )〉 are expanded in a Cartesian harmonic oscillator
basis and the number of spherical shells included in this basis is
Nshells = 7 with an oscillator length of b = 1.01A1/6. In Fig. 7
the VAP-PN energy landscape is plotted, showing a single
and well-defined minimum at β = 0.5, γ = 0◦ separated by
∼7.7 MeV from the spherical point and ∼6.1 MeV from the
oblate saddle point at β = 0.25. These results are consistent
with the ones obtained in the axial calculation (see Fig. 1)
with the difference of having a saddle point in the (β, γ ) plane
instead of a minimum on the oblate side. Similar PESs are
obtained for Skyrme (HFB with PN-PAV included) [47] and
relativistic (BCS without PNP) [48] interactions, although a
softer surface between the spherical point and the minimum is
obtained for the Skyrme interaction.

A. Triaxial PNAMP potential energy surfaces
and the RVAMPIR approach for 24Mg

The solution of the triaxial HWG equation, Eq. (13), does
not require us to perform a separate angular momentum
projection in the laboratory system for each component of the
GCM basis states in the sense of Eq. (22). However, as in the
axial case, we expect the PNAMP potential energy surfaces to
provide insight and a better interpretation of the configuration
mixing calculations. We can also separate the energy gain
resulting from the triaxial AMP from the one from the (β, γ )

configuration mixing. Furthermore, they are very important
because the minima of these PESs determine the associated
RVAMPIR solution. The PNAMP is an involved approach that
requires the solution of the HWG equation, Eq. (23), to include
the K mixing. The HWG eigenstates, Eq. (22), provide real
eigenstates of the symmetry operators that can be used, as we
shall see in the following, to generate energy spectra and to
calculate transition probabilities.

In Fig. 8 we plot the normalized PNAMP energy landscapes
in the (β, γ ) plane for the lowest eigenvalue in the K space
for each angular momentum I = 0+

1 –8+
1 [see Eq. (23)]. In

addition, all the points close to the spherical one, and those
close to axiality for odd values of I , have been removed for
I %= 0 because their norm is very small. The first noticeable
aspect is that the VAP-PN axial minimum of Fig. 7 becomes
a saddle point, the minimum being displaced toward larger
β values and γ > 0◦ for all values of the angular momentum,
although the barriers between the new minima and the axial
prolate saddle points are less than 1 MeV. For I = 0+

1 , 2+
1

the minima are located in (β ∼ 0.7, γ ∼ 10◦) whereas with
increasing value of the angular momentum we observe a
softening of the PES and a displacement of the minimum
to larger γ and smaller β deformation, (β ∼ 0.65, γ ∼ 15◦)
for I = 4+

1 , 5+
1 and (β ∼ 0.55, γ ∼ 17◦) for I = 6+

1 , 7+
1 , 8+

1 .
We also note that in the case of odd-I values the softening
of the PES is in the γ direction toward the oblate saddle
point. The energy difference between the VAP-PN and the
I = 0+

1 minima is ∼4.6 MeV but the gain in energy owing
to the inclusion of the triaxial degree of freedom (i.e, the
difference between the triaxial minimum and the axial saddle
point) is ∼0.7 MeV. Similar results have been reported with
Skyrme and relativistic interactions although these studies of
the PNAMP PES only extend to I = 0, 2 and the effect of
increasing triaxiality with growing angular momentum has
not been analyzed.

For an interpretation of the configuration mixing calcula-
tions it has become customary to plot the diagonal matrix
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research is important because the full GCM-PNAMP calcula-
tion is very demanding of CPU time and both convergence
tests and the choice of the relevant parameters should be
performed in advance, but nonetheless also checked afterward.
In this section the final results for 24Mg are presented; their
calculation has been done with the set of integration points
in the Euler angles (Na = 8, Nb = 16, Nc = 16). We choose
the triangular mesh with Npoints = 99 shown in Fig. 7 to solve
the constrained particle number projection before the variation
(VAP-PN) equations. The intrinsic many-body wave functions
|$(β, γ )〉 are expanded in a Cartesian harmonic oscillator
basis and the number of spherical shells included in this basis is
Nshells = 7 with an oscillator length of b = 1.01A1/6. In Fig. 7
the VAP-PN energy landscape is plotted, showing a single
and well-defined minimum at β = 0.5, γ = 0◦ separated by
∼7.7 MeV from the spherical point and ∼6.1 MeV from the
oblate saddle point at β = 0.25. These results are consistent
with the ones obtained in the axial calculation (see Fig. 1)
with the difference of having a saddle point in the (β, γ ) plane
instead of a minimum on the oblate side. Similar PESs are
obtained for Skyrme (HFB with PN-PAV included) [47] and
relativistic (BCS without PNP) [48] interactions, although a
softer surface between the spherical point and the minimum is
obtained for the Skyrme interaction.

A. Triaxial PNAMP potential energy surfaces
and the RVAMPIR approach for 24Mg

The solution of the triaxial HWG equation, Eq. (13), does
not require us to perform a separate angular momentum
projection in the laboratory system for each component of the
GCM basis states in the sense of Eq. (22). However, as in the
axial case, we expect the PNAMP potential energy surfaces to
provide insight and a better interpretation of the configuration
mixing calculations. We can also separate the energy gain
resulting from the triaxial AMP from the one from the (β, γ )

configuration mixing. Furthermore, they are very important
because the minima of these PESs determine the associated
RVAMPIR solution. The PNAMP is an involved approach that
requires the solution of the HWG equation, Eq. (23), to include
the K mixing. The HWG eigenstates, Eq. (22), provide real
eigenstates of the symmetry operators that can be used, as we
shall see in the following, to generate energy spectra and to
calculate transition probabilities.

In Fig. 8 we plot the normalized PNAMP energy landscapes
in the (β, γ ) plane for the lowest eigenvalue in the K space
for each angular momentum I = 0+

1 –8+
1 [see Eq. (23)]. In

addition, all the points close to the spherical one, and those
close to axiality for odd values of I , have been removed for
I %= 0 because their norm is very small. The first noticeable
aspect is that the VAP-PN axial minimum of Fig. 7 becomes
a saddle point, the minimum being displaced toward larger
β values and γ > 0◦ for all values of the angular momentum,
although the barriers between the new minima and the axial
prolate saddle points are less than 1 MeV. For I = 0+

1 , 2+
1

the minima are located in (β ∼ 0.7, γ ∼ 10◦) whereas with
increasing value of the angular momentum we observe a
softening of the PES and a displacement of the minimum
to larger γ and smaller β deformation, (β ∼ 0.65, γ ∼ 15◦)
for I = 4+

1 , 5+
1 and (β ∼ 0.55, γ ∼ 17◦) for I = 6+

1 , 7+
1 , 8+

1 .
We also note that in the case of odd-I values the softening
of the PES is in the γ direction toward the oblate saddle
point. The energy difference between the VAP-PN and the
I = 0+

1 minima is ∼4.6 MeV but the gain in energy owing
to the inclusion of the triaxial degree of freedom (i.e, the
difference between the triaxial minimum and the axial saddle
point) is ∼0.7 MeV. Similar results have been reported with
Skyrme and relativistic interactions although these studies of
the PNAMP PES only extend to I = 0, 2 and the effect of
increasing triaxiality with growing angular momentum has
not been analyzed.

For an interpretation of the configuration mixing calcula-
tions it has become customary to plot the diagonal matrix
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Theoretical Framework
 Third step: Configuration mixing within the framework of the Generator 
Coordinate Method (GCM). K and deformation mixing
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FIG. 11. (Color online) GCM-PNAMP energies (I = 2) as a
function of the corresponding norm eigenvalue, normalized to the
highest value, used as cutoff in the definition of the natural basis
[Eq. (17)].

momentum. These generalized eigenvalue problems are
solved by removing the linear dependence of the states with
the definition of the orthonormal natural basis [Eq. (17)]. To
avoid spurious states in this basis, we have to define a cutoff
parameter, ζ , to determine the states in the natural basis [see
Eq. (17) and the text that follows it]. The convergence of the
triaxial PNAMP-GCM method is showed in Fig. 11 where the
lowest three energy values obtained for I = 2 are represented
as a function of the parameter ζ . Here we distinguish a region
of large ζ in which the energies are decreasing followed by
a range of values where the energies are nearly constant.
The appearance of these plateaus is the signature of the
convergence of the GCM method [67]. We observe that this
plateau is better defined for the 2+

1 and 2+
2 states as compared

to the 2+
3 . Finally, for small values of ζ the linear dependence

shows up and we obtain meaningless values for the energy.
The final choice for ζ is a value around which we observe
a wide plateau for all the levels of interest. This value must
be kept constant for a given angular momentum to guarantee
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Axial Triaxial Experiment

24Mg

FIG. 12. Calculated excitation energies and reduced transition probabilities B(E2) (in e2 fm4) in 24Mg obtained using axially symmetric
(left) and triaxial (middle) GCM-PNAMP approaches compared to the experimental values (right). The widths of the arrows are proportional
to the corresponding B values. The experimental values are taken from Ref. [68].

the orthogonality of the corresponding wave functions. This
analysis has been performed for different values of the angular
momentum, showing in all cases a behavior similar to the one
presented in Fig. 11. Eventually, we have chosen ζ = 10−3

as the final value, similar to the one found in Ref. [49]. This
procedure can be complemented by an inspection of the shape
of the collective wave function as a function of ζ .

In the central panel of Fig. 12 we now plot the spectrum
of 24Mg extracted from the triaxial GCM calculations. We
classify the different levels in three bands according to the
corresponding B(E2) values. The ground-state band is formed
by a sequence of even angular momentum states with a
level spacing very similar to that of a rotational band. The
first excited band consists of states with I = 2, 3, 4, 5, . . .
as expected for a γ band. The third band is built of even-I
states on top of the second 0+

2 state. We can also compare
the absolute value of the ground-state energy calculated with
different approaches. The lowest value is obtained with the
triaxial GCM-PNAMP method (−201.36 MeV); −200.74
and −200.67 MeV are the results for RVAMPIR and axial
GCM-PNAMP approximations, respectively. Comparing the
first two values we observe that the energy gained by mixing
different shapes is ≈0.5 MeV, much less than the correlation
provided by PN and/or AM restoration. However, the inclusion
of the triaxial degree of freedom within the GCM framework
gives a similar energy gain (≈0.5 MeV) because the ground
state—as well as the whole band built on top of it—is already
well described by an axial calculation in this particular nucleus.
Major changes, as we will see in the following, are however
found for the excited bands.

Concerning the transition probabilities, we observe strong
electric quadrupole intraband transitions whereas the interband
E2 transitions are much weaker. This fact indicates different
underlying structures of the bands and the absence of mixing
between them. We can study the nature of these bands by

064323-12

Convergence of the GCM states

- Plateau condition as a function 
of natural states.

- Orthogonalization 
requirements.
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24Mg

- Axial ground state rotational band well 
described with axial calculations in this nucleus

- Second band associated to a gamma band

- Overall qualitative agreement between 
experimental data and triaxial calculations 
(energies and B(E2))

- Too high energies for the second and third 
band heads (lack of time reversal symmetry 
broken -cranking- states)

 Third step: Configuration 
mixing within the framework of 
the Generator Coordinate 
Method (GCM). K and 
deformation mixing
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- Axial ground state rotational 
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- Second band associated to a 
gamma band

-Third band with shape mixing
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the Generator Coordinate 
Method (GCM). K and 
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(~1 month per nucleus in 100 nodes)
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• Check the interval of deformations and the number of oscillator shells 
with axial calculations. 

• Use a high resolution mesh in the triaxial plane.

• Check the number of integration points in the Euler angles studying the 
corresponding known mean values. Use rotated states to improve the 
convergence.

• Check the convergence of the final GCM calculations (plateau condition 
and orthonormalization requirements).

Theoretical Framework

Recipe for cooking triaxial calculations

2. Applications
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framework
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outlook
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Skyrme: M. Bender, P.-H. Heenen, Phys. Rev. C 78, 024309 (2008)
- Particle number and angular momentum restoration of intrinsic 
LN states.

Relativistic: J.M. Yao et al., Phys. Rev. C 81, 04431 (2010)
- Angular momentum restoration of intrinsic HFB states.

Gogny: T.R.R., J.L. Egido, Phys. Rev C 81, 064323 (2010)
- Particle number and angular momentum restoration of PN-VAP 
states.

Applications

24Mg is a bad choice to see triaxial effects!!

Relativistic: J.M. Yao et al., Phys. Rev. C 83, 014308 (2011), Phys. Rev. C 84, 024306 (2011)
Gogny:  T.R.R. and J.L.E.,  Journal of Physics: Conference Series INPC (2010), 
Phys. Lett. B submitted, Phys. Rev. C submitted.
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The need of triaxiality:  126Xe as an example

Axial calculations 126Xe
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✓ TRIAXIAL calculations?
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The need of triaxiality:  126Xe as an example

Triaxial calculations 126Xe in a reduced 
configuration space (seven shells)

✓ One single minimum in γ=30º and 
saddle points in the axial 
configurations

✓ PES very soft in the γ degree of 
freedom

✓ TRIAXIAL calculations  

✓ After GCM, there is not 
coexistence of prolate and oblate 
configurations for the ground state, 
just a triaxial state.
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The need of triaxiality:  126Xe as an example

Triaxial calculations 126Xe

✓ Triaxial calculations are able to 
describe qualitatively the experimental 
data

✓ Branching ratios for the B(E2) 
nicely reproduced.

✓ TRIAXIAL calculations  
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Axial Triaxial Experiment

126Xe

of the band head of the quasi γ-band in the triaxial configuration mixing approach. For the
ground state we find a probability distribution centered at β = 0.2, γ = 30 very soft in the γ
direction. Looking at the corresponding wave function in the axial approximation, see Fig.3 we
also observe that in this approach the nucleus is described as a mixture of oblate and prolate
shapes.The probability distribution of the of the quasi γ band head display a broad maximum
at γ = 30 and a somewhat larger β deformation that the ground state, and a steeper decrease
in the γ direction. Both examples illustrate very clearly the relevance of the shape mixing in
these calculations.

Table 1. B(E2) branching ratios for 126Xe in the triaxial configuration mixing calculations
(third column) compared with experiment (second column).

Ii → If Exp. Theory

2+2 → 2+1 100. 100.
2+2 → 0+1 1.5 ±0.4 0.001

3+1 → 4+1 35.+10
−34 40.48

3+1 → 2+2 100. 100.
3+1 → 2+1 2.0+0.6

−1.7 0.000

4+2 → 4+1 76. ±22 80.6
4+2 → 2+2 100. 100.
4+2 → 2+1 0.4±0.1 0.007

5+1 → 6+1 75. ±23 59.6
5+1 → 4+2 76. ±21 90.6
5+1 → 3+1 100. 100.
5+1 → 4+1 2.9 ±0.8 0.02

6+2 → 6+1 34. +15
−23 27.1

6+2 → 4+2 100. 100.
6+2 → 4+1 0.49 ±0.15 0.003

7+1 → 6+2 40. ±26 45.11
7+1 → 5+1 100. 100.

In Table 1, finally, we show the B(E2) branching ratios in the triaxial configuration mixing
calculations and the experimental values [36]. In the table the maximal transition probability
of a given state has been set to 100, the other values have been corresponding scaled. It is very
remarkable that our results are in very good agreement with the experimental ones. As a matter
of fact, with the exception of the transitions which are smaller than 3% of the main transition,
all agree with the experimental values within the numerical uncertainties. In this nucleus, at
variance with 24Mg, we find strong interband transition probabilities.

4. Summary
In summary, we have presented two implementation of GCM-PNAMP method with fully triaxial
intrinsic wave functions found by solving the PN-VAP equations with the Gogny interaction.
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of the band head of the quasi γ-band in the triaxial configuration mixing approach. For the
ground state we find a probability distribution centered at β = 0.2, γ = 30 very soft in the γ
direction. Looking at the corresponding wave function in the axial approximation, see Fig.3 we
also observe that in this approach the nucleus is described as a mixture of oblate and prolate
shapes.The probability distribution of the of the quasi γ band head display a broad maximum
at γ = 30 and a somewhat larger β deformation that the ground state, and a steeper decrease
in the γ direction. Both examples illustrate very clearly the relevance of the shape mixing in
these calculations.

Table 1. B(E2) branching ratios for 126Xe in the triaxial configuration mixing calculations
(third column) compared with experiment (second column).

Ii → If Exp. Theory

2+2 → 2+1 100. 100.
2+2 → 0+1 1.5 ±0.4 0.001

3+1 → 4+1 35.+10
−34 40.48

3+1 → 2+2 100. 100.
3+1 → 2+1 2.0+0.6

−1.7 0.000

4+2 → 4+1 76. ±22 80.6
4+2 → 2+2 100. 100.
4+2 → 2+1 0.4±0.1 0.007

5+1 → 6+1 75. ±23 59.6
5+1 → 4+2 76. ±21 90.6
5+1 → 3+1 100. 100.
5+1 → 4+1 2.9 ±0.8 0.02

6+2 → 6+1 34. +15
−23 27.1

6+2 → 4+2 100. 100.
6+2 → 4+1 0.49 ±0.15 0.003

7+1 → 6+2 40. ±26 45.11
7+1 → 5+1 100. 100.

In Table 1, finally, we show the B(E2) branching ratios in the triaxial configuration mixing
calculations and the experimental values [36]. In the table the maximal transition probability
of a given state has been set to 100, the other values have been corresponding scaled. It is very
remarkable that our results are in very good agreement with the experimental ones. As a matter
of fact, with the exception of the transitions which are smaller than 3% of the main transition,
all agree with the experimental values within the numerical uncertainties. In this nucleus, at
variance with 24Mg, we find strong interband transition probabilities.

4. Summary
In summary, we have presented two implementation of GCM-PNAMP method with fully triaxial
intrinsic wave functions found by solving the PN-VAP equations with the Gogny interaction.
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The need of triaxiality:  126Xe as an example

Triaxial calculations 126Xe
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of the band head of the quasi γ-band in the triaxial configuration mixing approach. For the
ground state we find a probability distribution centered at β = 0.2, γ = 30 very soft in the γ
direction. Looking at the corresponding wave function in the axial approximation, see Fig.3 we
also observe that in this approach the nucleus is described as a mixture of oblate and prolate
shapes.The probability distribution of the of the quasi γ band head display a broad maximum
at γ = 30 and a somewhat larger β deformation that the ground state, and a steeper decrease
in the γ direction. Both examples illustrate very clearly the relevance of the shape mixing in
these calculations.

Table 1. B(E2) branching ratios for 126Xe in the triaxial configuration mixing calculations
(third column) compared with experiment (second column).

Ii → If Exp. Theory

2+2 → 2+1 100. 100.
2+2 → 0+1 1.5 ±0.4 0.001

3+1 → 4+1 35.+10
−34 40.48

3+1 → 2+2 100. 100.
3+1 → 2+1 2.0+0.6

−1.7 0.000

4+2 → 4+1 76. ±22 80.6
4+2 → 2+2 100. 100.
4+2 → 2+1 0.4±0.1 0.007

5+1 → 6+1 75. ±23 59.6
5+1 → 4+2 76. ±21 90.6
5+1 → 3+1 100. 100.
5+1 → 4+1 2.9 ±0.8 0.02

6+2 → 6+1 34. +15
−23 27.1

6+2 → 4+2 100. 100.
6+2 → 4+1 0.49 ±0.15 0.003

7+1 → 6+2 40. ±26 45.11
7+1 → 5+1 100. 100.

In Table 1, finally, we show the B(E2) branching ratios in the triaxial configuration mixing
calculations and the experimental values [36]. In the table the maximal transition probability
of a given state has been set to 100, the other values have been corresponding scaled. It is very
remarkable that our results are in very good agreement with the experimental ones. As a matter
of fact, with the exception of the transitions which are smaller than 3% of the main transition,
all agree with the experimental values within the numerical uncertainties. In this nucleus, at
variance with 24Mg, we find strong interband transition probabilities.

4. Summary
In summary, we have presented two implementation of GCM-PNAMP method with fully triaxial
intrinsic wave functions found by solving the PN-VAP equations with the Gogny interaction.
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Figure 31. The rp-process path beyond Z = 32 [4]. The termination due to fast α decay beyond
100Sn was taken from [223, 224].

Shape coexistence in the A ≈ 80 region which is due to the shape driving effect of the
g9/2 orbital may change drastically the GT distribution for β decay and its location inside the
QEC −Sp window and therefore both half lives and β-delayed proton emission. For illustration
in figure 32 the GT distributions for the 80Zr →80Y as calculated in the FRDM/QRPA [57,320]
is shown for the three competing shapes at N = Z = 40 in figure 4. The large uncertainties
are best characterized by the experimental values and errors for Sp = 3.03(18) MeV and
QEC = 5.7(1.5) MeV [149]. Shape coexistence gives rise to Iπ = 0+ shape isomers as
recently observed in 72Kr, that will be populated in β decay. For low excitation energy and/or
in the absence of atomic electrons in a hot environment the E0 ground state transitions will be
hindered giving rise to substantial half lives. If such shape isomers exist in nuclei along the
rp-process path, the astrophysical significance is that the proton capture on long-lived isomers
may speed up the reaction flow, thus reducing the time scale for the rp-process nucleosynthesis
during the cooling phase [2, 321].

One zone parametrized x-ray burst calculations have shown that the rp-process terminates
in a SnSbTe cycle [223] (see figure 31). The reason is that the light tellurium isotopes 105–108Te
are unbound against α emission by 3.4–4.9 MeV. Recently the α decay of the 105Te ground
state was observed [322, 323] with a half life of 0.6 µs and a decay energy of 4.889(6) MeV.
The presence of fast α decays is a clear signature for a pronounced shell closure at Z, N = 50
as known from the 208Pb region [324] and is expected to be even enhanced at N $ Z as super-
allowed α decay is predicted. The cyclic flow pattern stops continuation of the rp-process to
higher Z and at the same time is a source of increased 4He production. More realistic multi-
zone calculations [325, 326] have shown that only the first burst can reach the SnSbTe cycle,
for successive bursts a combination of ash from the previous burst and more realistic modeling
of burning in a range of mass zones gives conditions which realistically do not produce nuclei
heavier than A ∼ 60.

12. Summary and outlook

The description of a large variety of astrophysical events requires knowledge of the relevant
nuclear physics input combined with state-of-the-art hydrodynamic modeling, which then
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Figure 4. Deformed shell model level scheme along the rp-process path [57]. The lower and upper
abscissae give the quadrupole and hexadecupole deformation parameters ε2 and ε4, respectively.
The levels are labeled by the standard Nilsson asymptotic quantum numbers "[N#$] and parity
(−1)N . Exact quantum numbers are the projection of the nucleon angular momentum on the
symmetry axis " and the harmonic oscillator main quantum number N . For spherical shape the
quantum numbers nlj are listed.

or identical nucleon numbers. This is a clear signature for shape coexistence in this region
of the rp-process path with mutual mixing and consequences for the GT decay, which is
discussed in section 11. Note the shape coexistence for the N = Z waiting point nuclei 80Zr
(triple), 76Sr, 72Kr and 68Se. Spectroscopic factors for proton capture and decay might be
strongly reduced due to shape mismatch in the initial and final states [67, 68]. Moreover, the
presence of a high-spin orbital g9/2 and odd-parity pf orbitals gives rise to K isomerism of
multi-quasiparticle states which may compete in excitation, capture and decay with ground
states. Shape coexistence and K isomerism are of great importance for the s- and r-process
paths between the N = 50 and 82 and N = 82 and 126 neutron shells which is discussed
further in sections 8 and 10.

The ETFSI method is a fast-speed approximation to the Hartree–Fock model with Skyrme
forces. Pairing correlations are treated within the BCS approach assuming a δ-force [69]. These
results are complemented by relativistic mean-field calculations (RMF) [70], the Hartree–Fock
plus BCS approach (HF–BCS) [71] and full HFB [72] calculations for predicting ground state
deformation for a large number of nuclei [73]. All these models treat deformation up to higher
multipole orders, including terms in addition to the quadrupole deformation, the octupole, ε3,
the hexadecapole, ε4 and hexacontatetrapole ε6 deformations. In figure 5 the results of various
approaches are shown as two-neutron separation energies, which are a measure for the shell
gap structure (see section 2.4 for a definition of S2n) in the astrophysically relevant region
Z = 30–70 and N = 40–140, and are compared with a shell model based mass formula
by Duflo and Zuker [74]. The latter decomposes the nuclear Hamiltonian into its monopole
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Figure 32. Gamow–Teller distribution and half life for the β decay of 80Zr calculated for three
different shapes as indicated in figure 4 [4]. The dashed lines mark the theoretical proton separation
energy Sp in the daughter 80Y and the QEC value. Best experimental estimates for these quantities
are 3.03(18) Mev and 5.7(1.5) MeV, respectively.

leads to testable predictions with actual observations. The field of nuclear astrophysics has
benefitted recently from a wealth of data of unprecedented quality provided by both satellite and
earthbound observations as well as by neutrino detectors. Many of these new insights relate to
explosive astrophysical events like supernovae, novae or x-ray bursters, which occur at rather
extreme temperatures and densities. Under these conditions unstable nuclei with very exotic
proton-to-neutron ratios come into existence and determine the dynamics of the astrophysical
events. In the future, experiments with radioactive ion beams will allow one to determine some
of the crucial nuclear input data directly making it unnecessary to rely on empirical global
models. Equally important, these investigations are essential for the understanding of the
isospin and density-dependence of the effective nucleon–nucleon interaction thus constraining
and improving nuclear models and giving more confidence in the application of such models to
nuclei very far-off stability where data are not yet available, but which are required to simulate,
for example, supernovae explosions or r-process nucleosynthesis.

In this paper we have summarized some of the recent experimental and theoretical progress
related to several astrophysical events. Our review includes

• the evolution of nuclear structure towards the driplines and the ‘sites’ of astrophysical
processes in the Segré chart;

• the current status, its potential and the predictability of nuclear structure models such as
the spherical shell model, the continuum shell model, the cluster model and the globally
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There are very few experimental data information of this nucleus:

- Ground state band energies (almost rotational) 
(C.J. Lister et al, Phys. Rev. Lett. 59, 1270 (1987) and S. M. Fischer et al., Phys. Rev. Lett. 87, 132501 (2001))

-  β+ half-life (4.1 s) 
(J. J. Ressler et al., Phys. Rev. Lett. 84, 2104 (2000)) 

S. M. Fischer et al., Phys. Rev. Lett. 87, 132501 (2001)

J. J. Ressler et al., Phys. Rev. 
Lett. 84, 2104 (2000)
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First step: Particle Number Projection (before the variation) of HFB-type 
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• Up to five minima in the potential energy 
surface.
• Absolute minimum corresponds to spherical 
configuration (N=40 spherical gap)
• Other minima related to the filling in and out of 
g9/2, p1/2, f5/2 and d5/2 orbits.
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 Second step: Simultaneous Particle Number and Angular Momentum 
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 Second step: Simultaneous Particle Number and Angular Momentum 
Projection

|IMK;NZ;βγ� = 2I + 1
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Relevance of angular momentum projection
(Similar feature as in 32Mg, see R. Rodriguez-Guzmán et al., Nucl. Phys. A 709, 201 (2002))

Triaxial calculations 80Zr (83 states, 9 shells)
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-Several rotational bands and gamma bands partners associated to the different minima of 
the potential energy surfaces.

- Axial ground state rotational band in agreement with the experimental levels 
(relevance of beyond-mean-field effects).

- Two triaxial rotational bands.

- Four excited 0+ minima within a range of  ~2.25 MeV ⇒ MULTISHAPE COEXISTENCE

- However, these levels are not thermally populated in astrophysical conditions (T~100 keV)

- Electromagnetic transitions are much faster than beta decay half-lives ⇒ NO INFLUENCE 

in the rp process nucleosynthesis 

T.R.R and J.L. Egido, Phys. Lett. B submitted.
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Conclusions and outlook

 Current phenomenological Energy Density Functional methods 
including triaxial shapes provide a very good description and physical 
insight of many phenomena in nuclei along the whole nuclear chart.

 It is a competitive alternative and/or complement to shell model 
calculations.

 Computational time is still a problem.

 Some improvements have to be performed yet:

• Projection of cranking states (time reversal symmetry breaking). 

• Include quasiparticle states (blocking) to describe single particle 
excitations, odd nuclei and     transitions.

• Include parity and isospin breaking.

• Fit the interaction with beyond mean field calculations (relevant to 
mass table calculations) and/or develop new non-empirical functionals 
based on QCD (relevant to mass table calculations). 

β
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