A critical evaluation of the Gaussian Overlap Approximation (GOA)

P.-G. Reinhard¹.

¹ Institut für Theoretische Physik, Friedrich-Alexander-Universität, Erlangen/Germany

Outline

Theoretical considerations

2 Center-of-mass motion

3 Rotation

Quadrupole deformation

P.-G. Reinhard (Saclay 2011)

(Open points)

Theoretical considerations

- motivation of Gaussian Overlap Approximation (GOA)
- evaluation of GOA parameters in connection with energy-density functionals (EDF)

= ~ ~ ~

A B > A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A

Path = set of mean-field states: Correlated state:

Griffin-Hill-Wheeler (GHW) eq.:

 $\{ |\Phi_q \rangle \}$ $|\Phi\rangle = \int dq |\Phi_q\rangle f(q)$ $\int dq' \mathcal{H}(q,q') f(q') = E \int dq' \mathcal{I}(q,q') f(q')$ $\mathcal{H}(q,q') = \langle \Phi_q | \hat{\mathcal{H}} | \Phi_{q'} \rangle , \ \mathcal{I}(q,q') = \langle \Phi_q | \Phi_{q'} \rangle$

Path = set of mean-field states: Correlated state: Griffin-Hill-Wheeler (GHW) eq.:

$$\{ |\Phi_q\rangle \}$$

$$|\Phi\rangle = \int dq |\Phi_q\rangle f(q)$$

$$\int dq' \ \mathcal{H}(q,q') f(q') = E \int dq' \ \mathcal{I}(q,q') f(q')$$

$$\mathcal{H}(q,q') = \langle \Phi_q | \hat{\mathcal{H}} | \Phi_{q'}\rangle, \ \mathcal{I}(q,q') = \langle \Phi_q | \Phi_{q'}\rangle$$

Problem with energy-density functionals (EDF):

 \hat{H} unkown $\implies \mathcal{H}(q,q') = ??$ for $q \neq q'$ only the expectation value given: $\mathcal{H}(q,q'=q) \equiv E(\rho_q)$, $\rho_q(r) = \langle \Phi_q | \hat{\rho}(r) | \Phi_q \rangle$

3 3 9 9 9 9

Path = set of mean-field states: Correlated state: Griffin-Hill-Wheeler (GHW) eq.:

$$\{ |\Phi_q\rangle \}$$

$$|\Phi\rangle = \int dq |\Phi_q\rangle f(q)$$

$$\int dq' \mathcal{H}(q,q') f(q') = E \int dq' \mathcal{I}(q,q') f(q')$$

$$\mathcal{H}(q,q') = \langle \Phi_q | \hat{\mathcal{H}} | \Phi_{q'}\rangle , \ \mathcal{I}(q,q') = \langle \Phi_q | \Phi_{q'}\rangle$$

Problem with energy-density functionals (EDF):

 \hat{H} unkown $\implies \mathcal{H}(q,q') = ??$ for $q \neq q'$ only the expectation value given: $\mathcal{H}(q,q'=q) \equiv E(\rho_q)$, $\rho_q(r) = \langle \Phi_q | \hat{\rho}(r) | \Phi_q \rangle$

Analytical continuation in complex q plane \implies extension of EDF: $\mathcal{H}(q,q') \equiv \mathcal{E}(\rho_{qq'}), \ \rho_{qq'}(r) = \langle \Phi_q | \hat{\rho}(r) | \Phi_{q'} \rangle$

Path = set of mean-field states: Correlated state: Griffin-Hill-Wheeler (GHW) eq.:

$$\{ |\Phi_q\rangle \}$$

$$|\Phi\rangle = \int dq |\Phi_q\rangle f(q)$$

$$\int dq' \ \mathcal{H}(q,q') f(q') = E \int dq' \ \mathcal{I}(q,q') f(q')$$

$$\mathcal{H}(q,q') = \langle \Phi_q | \hat{\mathcal{H}} | \Phi_{q'}\rangle , \ \mathcal{I}(q,q') = \langle \Phi_q | \Phi_{q'}\rangle$$

Problem with energy-density functionals (EDF):

 \hat{H} unkown $\implies \mathcal{H}(q,q') = ??$ for $q \neq q'$ only the expectation value given: $\mathcal{H}(q,q'=q) \equiv E(\rho_q)$, $\rho_q(r) = \langle \Phi_q | \hat{\rho}(r) | \Phi_q \rangle$

Analytical continuation in complex q plane \implies extension of EDF: $\mathcal{H}(q,q') \equiv \mathcal{E}(\rho_{qq'}), \ \rho_{qq'}(r) = \langle \Phi_q | \hat{\rho}(r) | \Phi_{q'} \rangle$

Still problems if: 1) $\rho_{qq'}$ becomes singular

2) $E(\rho)$ not analytical (e.g. exchange in Slater appr. $E \propto \rho^{4/3}$)

Path = set of mean-field states: Correlated state: Griffin-Hill-Wheeler (GHW) eq.:

$$\{ |\Phi_q\rangle \}$$

$$|\Phi\rangle = \int dq |\Phi_q\rangle f(q)$$

$$\int dq' \mathcal{H}(q,q') f(q') = E \int dq' \mathcal{I}(q,q') f(q')$$

$$\mathcal{H}(q,q') = \langle \Phi_q | \hat{\mathcal{H}} | \Phi_{q'} \rangle , \ \mathcal{I}(q,q') = \langle \Phi_q | \Phi_{q'} \rangle$$

Problem with energy-density functionals (EDF):

 \hat{H} unkown $\implies \mathcal{H}(q,q') = ??$ for $q \neq q'$ only the expectation value given: $\mathcal{H}(q,q'=q) \equiv E(\rho_q)$, $\rho_q(r) = \langle \Phi_q | \hat{\rho}(r) | \Phi_q \rangle$

Analytical continuation in complex q plane \implies extension of EDF: $\mathcal{H}(q,q') \equiv \mathcal{E}(\rho_{qq'}), \ \rho_{qq'}(r) = \langle \Phi_q | \hat{\rho}(r) | \Phi_{q'} \rangle$

Still problems if: 1) $\rho_{qq'}$ becomes singular

2) $E(\rho)$ not analytical (e.g. exchange in Slater appr. $E \propto \rho^{4/3}$)

Problems circumvented by the Gaussian Overlap Approximation (GOA)

⇒ this talk: explore performance of (topological) GOA for typical collective motion (ignoring here the further step to a collective Schrödinger equation)

< □ > < □ > < 亘 > < 亘 > < 亘 ≤ の < ○

The Gaussian Overlap Approximation (GOA)

Experience: overlaps qickly decreasing with |q - q'| for fixed $\overline{q} = \frac{q + q'}{2}$ \implies approximate by Gaussians

$$\begin{split} \mathcal{I}(q,q') &\approx & \exp\left(\mathrm{i}\mu(q-q') - \frac{\lambda}{4}(q-q')^2\right) = \mathcal{I}^{(\mathrm{GOA})}(q,q') \\ \mathcal{H}(q,q') &\approx & \mathcal{I}^{(\mathrm{GOA})}(q,q') \left[\mathcal{H}_0(\overline{q}) + \mathrm{i}(q-q')\mathcal{H}_1(\overline{q}) - \frac{(q-q')^2}{8\lambda^2} \mathcal{H}_2(\overline{q}) \right] \\ &\lambda = 2\langle \Phi_{\overline{q}} | \stackrel{\overleftarrow{\partial}_{\overline{q}}}{\partial_{\overline{q}}} \stackrel{\overrightarrow{\partial}_{\overline{q}}}{\partial_{\overline{q}}} | \Phi_{\overline{q}} \rangle \quad , \quad \mu = -\frac{\mathrm{i}}{2} \langle \Phi_{\overline{q}} | \stackrel{\overleftarrow{\partial}_{\overline{q}}}{\partial_{\overline{q}}} - \stackrel{\overrightarrow{\partial}_{\overline{q}}}{\partial_{\overline{q}}} | \Phi_{\overline{q}} \rangle \\ &\mathcal{H}_0(\overline{q}) = \langle \Phi_{\overline{q}} | \hat{\mathcal{H}} | \Phi_{\overline{q}} \rangle \quad , \quad \mathcal{H}_1(\overline{q}) = -\frac{\mathrm{i}}{2} \langle \Phi_{\overline{q}} | \stackrel{\overleftarrow{\partial}_{\overline{q}}}{\partial_{\overline{q}}} \hat{\mathcal{H}} - \hat{\mathcal{H}} \stackrel{\overrightarrow{\partial}_{\overline{q}}}{\partial_{\overline{q}}} | \Phi_{\overline{q}} \rangle \\ &\mathcal{H}_2(\overline{q}) = \langle \Phi_{\overline{q}} | \stackrel{\overleftarrow{\partial}_{\overline{q}}}{\partial_{\overline{q}}} \hat{\mathcal{H}} - 2 \stackrel{\overleftarrow{\partial}_{\overline{q}}}{\partial_{\overline{q}}} \hat{\mathcal{H}} \stackrel{\overrightarrow{\partial}_{\overline{q}}}{\partial_{\overline{q}}} + \stackrel{\overrightarrow{\partial}_{\overline{q}}}{\partial_{\overline{q}}} | \Phi_{\overline{q}} \rangle \end{split}$$

The Gaussian Overlap Approximation (GOA)

Experience: overlaps gickly decreasing with |q - q'| for fixed $\overline{q} = \frac{q + q'}{2}$ \implies approximate by Gaussians

$$\begin{split} \mathcal{I}(q,q') &\approx & \exp\left(\mathrm{i}\mu(q-q') - \frac{\lambda}{4}(q-q')^2\right) = \mathcal{I}^{(\mathrm{GOA})}(q,q') \\ \mathcal{H}(q,q') &\approx & \mathcal{I}^{(\mathrm{GOA})}(q,q') \left[\mathcal{H}_0(\overline{q}) + \mathrm{i}(q-q')\mathcal{H}_1(\overline{q}) - \frac{(q-q')^2}{8\lambda^2}\mathcal{H}_2(\overline{q}) \right] \\ &\lambda = 2\langle \Phi_{\overline{q}} | \stackrel{\overleftarrow{\partial}_{\overline{q}}}{\partial \overline{d}_{\overline{q}}} | \Phi_{\overline{q}} \rangle \quad , \quad \mu = -\frac{\mathrm{i}}{2}\langle \Phi_{\overline{q}} | \stackrel{\overleftarrow{\partial}_{\overline{q}}}{\partial \overline{q}} - \stackrel{\overrightarrow{\partial}_{\overline{q}}}{\partial \overline{q}} | \Phi_{\overline{q}} \rangle \\ &\mathcal{H}_0(\overline{q}) = \langle \Phi_{\overline{q}} | \hat{\mathcal{H}} | \Phi_{\overline{q}} \rangle \quad , \quad \mathcal{H}_1(\overline{q}) = -\frac{\mathrm{i}}{2}\langle \Phi_{\overline{q}} | \stackrel{\overleftarrow{\partial}_{\overline{q}}}{\partial \overline{q}} \hat{\mathcal{H}} - \hat{\mathcal{H}} \stackrel{\overrightarrow{\partial}_{\overline{q}}}{\partial \overline{q}} | \Phi_{\overline{q}} \rangle \\ &\mathcal{H}_2(\overline{q}) = \langle \Phi_{\overline{q}} | \stackrel{\overleftarrow{\partial}_{\overline{q}}}{\partial \overline{q}} \hat{\mathcal{H}} - 2 \stackrel{\overleftarrow{\partial}_{\overline{q}}}{\partial \overline{q}} \hat{\mathcal{H}} \stackrel{\overrightarrow{\partial}_{\overline{q}}}{\partial \overline{q}} | \Phi_{\overline{q}} \rangle \end{split}$$

GOA requires **collective** path \leftrightarrow **many** s.p. states move each a **little** bit simple example: *N*-boson state

$$egin{aligned} \mathcal{I}(q,q') &= \left(\langle arphi_q | arphi_{q'}
angle
ight)^{N} pprox \left[1-(q-q')\langle arphi_{\overline{q}} | \stackrel{\leftrightarrow}{\partial_{\overline{q}}} | arphi_{\overline{q}}
angle - rac{(q-q')^{2}}{2}\langle arphi_{\overline{q}} | \stackrel{\leftrightarrow}{\partial_{\overline{q}}} \stackrel{
ightarrow}{\partial_{\overline{q}}} | arphi_{\overline{q}}
angle
ight]^{N} \ pprox & \exp\left(\mathrm{i}\mu(q-q') - rac{\lambda}{4}(q-q')^{2}
ight) \end{aligned}$$

• •

The Gaussian Overlap Approximation (GOA)

Experience: overlaps qickly decreasing with |q - q'| for fixed $\overline{q} = \frac{q + q'}{2}$ \implies approximate by Gaussians

$$\begin{split} \mathcal{I}(q,q') &\approx & \exp\left(\mathrm{i}\mu(q-q') - \frac{\lambda}{4}(q-q')^2\right) = \mathcal{I}^{(\mathrm{GOA})}(q,q') \\ \mathcal{H}(q,q') &\approx & \mathcal{I}^{(\mathrm{GOA})}(q,q') \left[\mathcal{H}_0(\overline{q}) + \mathrm{i}(q-q')\mathcal{H}_1(\overline{q}) - \frac{(q-q')^2}{8\lambda^2}\mathcal{H}_2(\overline{q})\right] \\ &\lambda = 2\langle \Phi_{\overline{q}}| \overleftarrow{\partial_{\overline{q}}} \overrightarrow{\partial_{\overline{q}}} |\Phi_{\overline{q}}\rangle \quad , \quad \mu = -\frac{\mathrm{i}}{2}\langle \Phi_{\overline{q}}| \overleftarrow{\partial_{\overline{q}}} - \overrightarrow{\partial_{\overline{q}}} |\Phi_{\overline{q}}\rangle \\ &\mathcal{H}_0(\overline{q}) = \langle \Phi_{\overline{q}}| \widehat{H} |\Phi_{\overline{q}}\rangle \quad , \quad \mathcal{H}_1(\overline{q}) = -\frac{\mathrm{i}}{2}\langle \Phi_{\overline{q}}| \overleftarrow{\partial_{\overline{q}}} \widehat{H} - \widehat{H} \overrightarrow{\partial_{\overline{q}}} |\Phi_{\overline{q}}\rangle \\ &\mathcal{H}_2(\overline{q}) = \langle \Phi_{\overline{q}}| \overleftarrow{\partial_{\overline{q}}}^2 \widehat{H} - 2 \overleftarrow{\partial_{\overline{q}}} \widehat{H} \overrightarrow{\partial_{\overline{q}}} + \widehat{H} \overrightarrow{\partial_{\overline{q}}}^2 |\Phi_{\overline{q}}\rangle \end{split}$$

Advantage of GOA: \mathcal{H}_0 & \mathcal{H}_2 can be computed with EDF \mathcal{H}_0 : trivially as $\mathcal{H}_0 = E(\rho_{\overline{q}})$ (expectation value of Slater state) $\mathcal{H}_1, \mathcal{H}_2$: by analytical continuation (Wick rotation) $\rightarrow \dots$

define generating momentum: $\hat{P}|\Phi_q\rangle = i\partial_q|\Phi_q\rangle$, $\langle\Phi_q|\hat{P} = -i\langle\Phi_q|\partial_q$ (is a 1*ph* operator)

ELE DQC

define generating momentum: $\hat{P}|\Phi_q\rangle = i\partial_q|\Phi_q\rangle$, $\langle\Phi_q|\hat{P} = -i\langle\Phi_q|\partial_q$ (is a 1*ph* operator) $\implies |\Phi_q\rangle = \exp\left(iq\hat{P}\right)|\Phi_0\rangle$, $\langle\Phi_q| = \langle\Phi_0|\exp\left(-iq\hat{P}\right)$

 $\mathcal{H}_2 = \langle \Phi_{\overline{q}} | \{ \hat{P}, \{ \hat{H}, \hat{P} \} \} | \Phi_{\overline{q}} \rangle$ = double anti-commutator - not yet suited for EDF

I= nan

define generating momentum: $\hat{P}|\Phi_q\rangle = i\partial_q|\Phi_q\rangle$, $\langle\Phi_q|\hat{P} = -i\langle\Phi_q|\partial_q$ (is a 1*ph* operator) $\implies |\Phi_q\rangle = \exp\left(iq\hat{P}\right)|\Phi_0\rangle$, $\langle\Phi_q| = \langle\Phi_0|\exp\left(-iq\hat{P}\right)$

 $\mathcal{H}_2 = \langle \Phi_{\overline{q}} | \{ \hat{P}, \{ \hat{H}, \hat{P} \} \} | \Phi_{\overline{q}} \rangle \text{ = double anti-commutator - not yet suited for EDF}$

rotate to imaginary q-axis $q \rightarrow -iu$: (Wick rotation)

$$\implies \quad |\tilde{\Phi}_u\rangle = \exp\left(u\hat{P}\right)|\Phi_0\rangle \;,\; \langle\tilde{\Phi}_u| = \langle\Phi_0|\exp\left(u\hat{P}\right)$$

define generating momentum: $\hat{P}|\Phi_q\rangle = i\partial_q|\Phi_q\rangle$, $\langle\Phi_q|\hat{P} = -i\langle\Phi_q|\partial_q$ (is a 1*ph* operator) $\implies |\Phi_q\rangle = \exp\left(iq\hat{P}\right)|\Phi_0\rangle$, $\langle\Phi_q| = \langle\Phi_0|\exp\left(-iq\hat{P}\right)$ $\mathcal{H}_2 = \langle\Phi_{\overline{\alpha}}|\{\hat{P}, \{\hat{H}, \hat{P}\}\}|\Phi_{\overline{\alpha}}\rangle$ = double anti-commutator - not yet suited for EDF

rotate to imaginary q-axis $q \rightarrow -iu$: (Wick rotation)

$$\begin{array}{ll} \Longrightarrow & |\tilde{\Phi}_{u}\rangle = \exp\left(u\hat{P}\right)|\Phi_{0}\rangle \ , \ \langle\tilde{\Phi}_{u}| = \langle\Phi_{0}|\exp\left(u\hat{P}\right) \\ \\ \Longrightarrow & \partial_{u}^{2}\langle\tilde{\Phi}_{u}|\hat{H}|\tilde{\Phi}_{u}\rangle = \langle\Phi_{0}|\{\hat{P},\{\hat{H},\hat{P}\}\}|\Phi_{0}\rangle = \mathcal{H}_{2} \\ \\ & \text{and} \quad \langle\tilde{\Phi}_{u}|\hat{H}|\tilde{\Phi}_{u}\rangle \equiv E(\rho_{u}) \ , \ \rho_{u}(r) = \langle\Phi_{u}|\hat{\rho}(r)|\Phi_{u}\rangle \end{array}$$

$$\implies \mathcal{H}_2 = \partial_u^2 E(\rho_u)|_{\rho=0}$$
 well defined in DFT

define generating momentum: $\hat{P}|\Phi_q\rangle = i\partial_q|\Phi_q\rangle$, $\langle\Phi_q|\hat{P} = -i\langle\Phi_q|\partial_q$ (is a 1*ph* operator) $\implies |\Phi_q\rangle = \exp\left(iq\hat{P}\right)|\Phi_0\rangle$, $\langle\Phi_q| = \langle\Phi_0|\exp\left(-iq\hat{P}\right)$ $\mathcal{H}_2 = \langle\Phi_{\overline{\alpha}}|\{\hat{P}, \{\hat{H}, \hat{P}\}\}|\Phi_{\overline{\alpha}}\rangle$ = double anti-commutator - not yet suited for EDF

rotate to imaginary *q*-axis $q \rightarrow -iu$: (Wick rotation)

$$\begin{array}{l} \Longrightarrow \quad |\tilde{\Phi}_{u}\rangle = \exp\left(u\hat{P}\right)|\Phi_{0}\rangle \ , \ \langle\tilde{\Phi}_{u}| = \langle\Phi_{0}|\exp\left(u\hat{P}\right) \\ \\ \Longrightarrow \quad \partial_{u}^{2}\langle\tilde{\Phi}_{u}|\hat{H}|\tilde{\Phi}_{u}\rangle = \langle\Phi_{0}|\{\hat{P},\{\hat{H},\hat{P}\}\}|\Phi_{0}\rangle = \mathcal{H}_{2} \\ \\ \text{and} \quad \langle\tilde{\Phi}_{u}|\hat{H}|\tilde{\Phi}_{u}\rangle \equiv \mathcal{E}(\rho_{u}) \ , \ \rho_{u}(r) = \langle\Phi_{u}|\hat{\rho}(r)|\Phi_{u}\rangle \end{array}$$

 $\implies \mathcal{H}_2 = \partial_u^2 E(\rho_u)|_{\rho=0}$ well defined in DFT

in principle applicable at any order $u^n \equiv$ analytical continuation but the Taylor expansion has to exist – not guaranteed for most EDF

Center-of-mass motion

- quality of GOA for norm overlap of ¹⁶O
- testing GOA for electro-magnetic formfactor of ${}^{16}O$
- counter example single-particle motion

(quality depends on momentum q)

= ~ Q Q

GOA for c.m. motion

GOA is well satisfied

log plot reveals deviations in the far outside wings \leftrightarrow correct asympt. $e^{-\gamma |R-R'|}$ GOA well applicable for observables which concentrate on small |R - R'|

The nuclear formfactor

charge formfactor:

$$F_C(\mathbf{q}) = \int d^3 r \, e^{i\mathbf{q}\cdot\mathbf{r}} \rho_C(\mathbf{r})$$

↔ electron scattering

Testing GOA for c.m. projection of the nuclear formfactor

projected state:

 $|\Psi\rangle = \int dR |\Phi_R\rangle$

 $q > 2k_{\rm F}$ anyway beyond mean-field description

GOA for c.m. projection more quantitatively

The difference between GOA and exact projection for diffraction radius and surface thickness (computed with SkM*):

	¹² C	¹⁶ O	⁴⁰ Ca	⁴⁸ Ca	²⁰⁸ Pb	present quality
δR_{diffr} [mfm]	35	-5	20	21	10	40
$\delta\sigma_{ m surf}$ [mfm]	-30	-4	20	20	9	40

the effect on $r_{\rm rms}$ is negligible (< 5 mfm)

 \implies correction small compared to typical error on R_{diffr} , σ_{surf} negligible for A > 50 – but beware when improving the precision

Counter example "non-collective": shift only $1d_{5/2,n}$ state in ¹⁷O

Rotation

- quality of GOA for norm overlap of ²²Ne
- extension to topologically augmented GOA (topGOA) for rotation
- counter example: rotation of ¹⁸O (=single-particle motion)

GOA for rotation

test case ²²Ne, SLy6, path: $|\Phi_{\vartheta}\rangle = \exp\left(-i\vartheta \hat{J}_{y}\right)|\Phi_{0}\rangle$

GOA is well satisfied in $-\pi < \vartheta < \pi$

but misses the basic structure of the exact $\mathcal{I}(\vartheta, \vartheta')$: π periodicity in $\vartheta - \vartheta'$

$$\mathsf{GOA:} \quad \mathcal{I}(q,q') \approx \exp\left(-\frac{\lambda}{4}(q-q')^2\right) \quad \text{for Cartesian coordinate } -\infty < q < +\infty$$

but: rotation angle $-\pi \leq \vartheta \leq \pi$ and/or periodicity $\vartheta \longrightarrow \vartheta + 2\pi$

GOA:
$$\mathcal{I}(q,q') \approx \exp\left(-\frac{\lambda}{4}(q-q')^2\right)$$
 for Cartesian coordinate $-\infty < q < +\infty$

but: rotation angle $-\pi \le \vartheta \le \pi$ and/or periodicity $\vartheta \longrightarrow \vartheta + 2\pi$ \implies modify q - q' to distance on the unit ring (sphere) $\sin(\vartheta - \vartheta')$: $\mathcal{I}(q,q') \approx \exp\left(-\frac{\lambda}{4}\sin(\vartheta - \vartheta')^2\right)$ θ'

GOA:
$$\mathcal{I}(q,q') \approx \exp\left(-\frac{\lambda}{4}(q-q')^2\right)$$
 for Cartesian coordinate $-\infty < q < +\infty$

but: rotation angle $-\pi \le \vartheta \le \pi$ and/or periodicity $\vartheta \longrightarrow \vartheta + 2\pi$ \implies modify q - q' to distance on the unit ring (sphere) $\sin(\vartheta - \vartheta')$: $\mathcal{I}(q,q') \approx \exp\left(-\frac{\lambda}{4}\sin(\vartheta - \vartheta')^2\right)$

and – take care of reflection symmetry = add reflected copy:

$$\mathcal{I}^{(\mathrm{topGOA})}(\boldsymbol{q}, \boldsymbol{q}') = \exp\left(-rac{\lambda}{4}\sin(artheta - artheta')^2
ight) + \exp\left(-rac{\lambda}{4}\sin(artheta - artheta' + \pi)^2
ight)$$

θ'

test case ²²Ne, SLy6, path: $|\Phi_{\vartheta}\rangle = \exp\left(-i\vartheta \hat{J}_{y}\right)|\Phi_{0}\rangle$

topGOA matches exact overlap very well (even for the small system ²²Ne)

P.-G. Reinhard (Saclay 2011)

A critical evaluation of the Gaussian Overlap Approxim

14. September 2011 16 / 33

Testing rotatonial topGOA for ¹⁸O

test case ¹⁸O, SLy6, path:
$$|\Phi_{artheta}
angle = \exp\left(-i\vartheta\hat{J}_{y}
ight)|\Phi_{0}
angle$$

topGOA misses the extra peak at $\theta = \pm \pi/2$

Testing rotatonial topGOA for ¹⁸O

test case ¹⁸O, SLy6, path:
$$|\Phi_{\vartheta}\rangle = \exp\left(-i\vartheta \hat{J}_{y}\right)|\Phi_{0}\rangle$$

topGOA misses the extra peak at $\theta = \pm \pi/2$

Quadrupole deformation

- testing GOA for norm overlap in ¹¹⁶Sn
- testing GOA for norm overlaps along Sn chain
- testing GOA for collective kinetic energy along Sn chain
- collective $E(2_1^+)$ energies along Sn chain

= ~ ~ ~

GOA and exact overlap for quadrupole deformation in ¹¹⁶Sn

¹¹⁶Sn, SLy6 -- compare norm overlaps at various quadrupole deformations

Diff. "GOA-exact" overlap for quadrupole deformation β in ¹¹⁶Sn

¹¹⁶Sn, SLy6 -- difference of norm overlaps 'exact-GOA'

deviation depends on average deformation - but is very small everywhere

= 990

P.-G. Reinhard (Saclay 2011)

A critical evaluation of the Gaussian Overlap Approxin

14. September 2011 21 / 33

Compare map of diffences with proton pairing

regions of "enhanced" deviation are clearly correlated to regions of quickly changing pairing energy

(as indicated by green vertical lines)

Average deviations along the chain of Sn isotopes Sn-chain, SLy6 -- integrated difference |Iexact-IGOA] 0.035 80 0.03 neutron number 75 0.025 70 0.02 65 0.015 60 0.01 55 0.005 50 n -0.4-0.2 0.2 0.4 average quadr. deformation deviations remain small everywhere, have slight trend to grow for $N \ge 50$ β regions with enhanced deviations are nearly independent of N < 3 > JI NOR

Difference "GOA-exact" for $\langle \Psi | \hat{\mathcal{T}} | \Psi \rangle$ along Sn chain

ELE NOR

Practical example: $E(2_1^+)$ energies in Sn and Pb chains

topGOA for vib.&rot. \longrightarrow collective Schrödinger eq. in 5-dim. Bohr coordinates (dynamical) path \leftrightarrow axial CHF, linear response for vibration & rotation interpolate potential, mass, inertia, GOA-width to triaxial plane

= nan

Practical example: $E(2_1^+)$ energies in Sn and Pb chains

topGOA for vib.&rot. \longrightarrow collective Schrödinger eq. in 5-dim. Bohr coordinates (dynamical) path \leftrightarrow axial CHF, linear response for vibration & rotation interpolate potential, mass, inertia, GOA-width to triaxial plane

mismatches next to shell closures

good description mid-shell

results comply with findings from study of error on collective kinetic energy however: deviations near shell closures partly to to CHF instead of ATDHF

Open points in brief

P.-G. Reinhard (Saclay 2011)

A critical evaluation of the Gaussian Overlap Approxim

14. September 2011 26 / 33

21= 990

・ロト ・回ト ・ヨト ・ヨト

Norm overlaps for gauge path (particle-number projection)

particle number projection $|\Psi\rangle = \int d\phi |\Phi_{\phi}\rangle \quad \leftrightarrow \quad \text{gauge path } |\Phi_{\phi}\rangle = e^{\mathrm{i}\phi\hat{N}}|\Phi_{0}\rangle$

P.-G. Reinhard (Saclay 2011)

A critical evaluation of the Gaussian Overlap Approxir

1ph states: Discrepancy of EDF exp. value and RPA energy

define generating operators: $\hat{P} = -i(\hat{a}_{p}^{\dagger}\hat{a}_{h} - h.c.)$, $\hat{Q} = \hat{a}_{p}^{\dagger}\hat{a}_{h} + h.c.$ 1*ph* path: $|\Phi_{qp}\rangle = \exp\left(ip\hat{Q}\right)\exp\left(-iq\hat{P}\right)|\Phi_{0}\rangle$, limiting case, e.g., $|\Phi_{\pi/2,0}\rangle = \hat{a}_{p}^{\dagger}\hat{a}_{h}|\Phi_{0}\rangle$ "RPA"=small oscillations along $qp \Rightarrow \omega_{RPA} \longleftrightarrow$ direct EDF evaluation $E_{ph} = E_{EDF}[\rho_{ph}]$ test case is an electronic system: Na₈ cluster with P&W EDF compared to exact exchange

results perfectly consistent for exact exchange - but dramatic difference for EDF

Conclusions Formal aspects

 $\langle \Phi_q | \hat{H} | \Phi_{q'} \rangle$ not given in DFT, may be recovered by analytical continuation problems with non-analiticity of energy-density functionals GOA complies with DFT \leftrightarrow only lowest order Wick rotation GOA implies collective deformations

ELE NOR

Conclusions

Formal aspects

 $\langle \Phi_q | \hat{H} | \Phi_{q'} \rangle$ not given in DFT, may be recovered by analytical continuation problems with non-analiticity of energy-density functionals GOA complies with DFT \leftrightarrow only lowest order Wick rotation GOA implies collective deformations

Realistic test cases

 $\begin{array}{lll} \mbox{center-of-mass ideally collective, works fine for bulk observables} & fails for high momenta (small distances) \\ \mbox{rotation} & requires topological extension} \rightarrow topGOA & works fine for collective rotation (22Ne), fails for s.p. structures (18O) & quality varies along the path (beware of quickly changing pairing) \\ \mbox{typical uncertainty on collective excitation energies} \approx 0.2 \ \mbox{MeV} & more uncertainty next to magic shells (s.p. structures) \\ \end{array}$

ELE NOR

Conclusions

Formal aspects

 $\langle \Phi_q | \hat{H} | \Phi_{q'} \rangle$ not given in DFT, may be recovered by analytical continuation problems with non-analiticity of energy-density functionals GOA complies with DFT \leftrightarrow only lowest order Wick rotation GOA implies collective deformations

Realistic test cases

ELE NOR

A (a) < A (b) < A (b) </p>

Conclusions

Formal aspects

 $\langle \Phi_q | \hat{H} | \Phi_{q'} \rangle$ not given in DFT, may be recovered by analytical continuation problems with non-analiticity of energy-density functionals GOA complies with DFT \leftrightarrow only lowest order Wick rotation GOA implies collective deformations

Realistic test cases

Future developments

GOA may be improved by extending Wick rotation to 4. order EDF directly for $\langle \Phi_q | \hat{H} | \Phi_{q'} \rangle$

Appendix: additional material in reserve

P.-G. Reinhard (Saclay 2011)

A critical evaluation of the Gaussian Overlap Approximation

14. September 2011 30 / 33

E 900

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Non-diagonal overlaps by analytical continuation for simplicity set $\overline{q} = 0$, thus considering

$$\begin{aligned} \mathcal{H}(q) &= \langle \Phi_{-q} | \hat{H} | \Phi_{q} \rangle = \langle \Phi_{0} | e^{-\mathrm{i}q\hat{P}} \hat{H} e^{-\mathrm{i}q\hat{P}} | \Phi_{0} \rangle \equiv \langle e^{-\mathrm{i}q\hat{P}} \hat{H} e^{-\mathrm{i}q\hat{P}} \rangle \\ &= \langle \hat{H} \rangle - \mathrm{i}q \langle \{\hat{H}, \hat{P}\} \rangle - \frac{q^{2}}{2} \langle \{\{\hat{H}, \hat{P}\}, \hat{P}\} \rangle + \mathrm{i}\frac{q^{3}}{6} \langle \{...\hat{H}, \underline{...\hat{P}}\} \rangle + \frac{q^{4}}{24} \langle \{...\hat{H}, \underline{...\hat{P}}\} \rangle ... \end{aligned}$$

turn to purely imaginary coordinate $q \longrightarrow i u \implies |\tilde{\Phi}_u\rangle = e^{u\hat{P}} |\Phi_0\rangle \implies$

$$\begin{split} \tilde{\mathcal{H}}(u) &= \langle \Phi_u | \hat{\mathcal{H}} | \Phi_u \rangle = \\ &= \langle \hat{\mathcal{H}} \rangle + u \langle \{ \hat{\mathcal{H}}, \hat{\mathcal{P}} \} \rangle + \frac{u^2}{2} \langle \{ \{ \hat{\mathcal{H}}, \hat{\mathcal{P}} \}, \hat{\mathcal{P}} \} \rangle + \frac{u^3}{6} \langle \{ ... \hat{\mathcal{H}}, \underline{... \hat{\mathcal{P}}} \} \rangle + \frac{u^4}{24} \langle \{ ... \hat{\mathcal{H}}, \underline{... \hat{\mathcal{P}}} \} \rangle ... \end{split}$$

DFT identification as $\tilde{\mathcal{H}}(u) = E(\rho_u) \Rightarrow$ reconstruct $\mathcal{H}(q)$ by analytical continuation e.g. by identifying $\partial_u^n \tilde{\mathcal{H}} = (-I)^n \partial_q^n \mathcal{H}$

problem: $\tilde{\mathcal{H}}(u)$ has to be analytical (Taylor expandable) \longleftrightarrow usually not provided GOA requires only existence up to $q^2(u^2) \iff$ usually possible

hope: stepwise improvement of GOA by going to higher order, e.g., q^4

TopGOA in the 5-dimensional quadrupole plane

Cartesian
$$\alpha_{2\mu}, \mu = -2, ..., +2 \quad \longleftrightarrow \quad \text{intrinsic (Bohr)} \quad (\beta, \gamma, \vartheta_x, \vartheta_y, \vartheta_z)$$

$$\alpha_{2\mu}(\beta, \gamma, \vartheta) = \beta \left[\cos \gamma D_{\mu 0}^{(2)}(\vartheta) + \sin \gamma \frac{D_{\mu+2}^{(2)}(\vartheta) + D_{\mu-2}^{(2)}(\vartheta)}{2} \right]$$

GOA appropriate for Cartesian coord.: $\mathcal{I}^{(Cart)}(\alpha, \alpha') = e^{-\frac{1}{4}(\alpha_{\mu} - \alpha'_{\mu})^* \lambda_{\mu\nu}(\alpha_{\nu} - \alpha'_{\nu})}$

topGOA for Bohr coordinates by transformation of $\mathcal{I}^{(Cart)}$:

1) insert
$$\alpha_{2\mu} = \alpha_{2\mu}(\beta, \gamma, \vartheta)$$

2) transform width matrix $\lambda_{\mu\nu}$ to intrinsic λ_{ij}^{intr}

$$\begin{aligned} \lambda_{\mu\nu} &= W_i^{\mu} \lambda_{ij}^{\text{intr}} W_j^{\nu} \\ W_i^{\mu} &: \nabla_i = W_i^{\mu} \nabla_{\alpha_{2\mu}} \quad , \quad i \in \{\beta, \gamma, \vartheta\} \end{aligned}$$

$$3) \text{ exploit symmetries} \quad \lambda_{ij}^{\text{intr}} = \begin{pmatrix} \lambda_{\beta\beta} & \lambda_{\beta\gamma} & 0 & 0 & 0 \\ \lambda_{\gamma\beta} & \lambda_{\gamma\gamma} & 0 & 0 & 0 \\ 0 & 0 & \lambda_x & 0 & 0 \\ 0 & 0 & 0 & \lambda_y & 0 \\ 0 & 0 & 0 & 0 & \lambda_z \end{pmatrix}$$

practically: evaluate by Maple, feed in directly to Fortran code

ELE NOR

GOA for c.m. motion – excited state

GOA is also well satisfied for this case

⇒ c.m. motion is most robust