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Theoretical considerations

motivation of Gaussian Overlap Approximation (GOA)

evaluation of GOA parameters in connection with energy-density functionals (EDF)
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Generator Coordinate Method (GCM) in general

Path = set of mean-field states: {|Φq〉}
Correlated state: |Φ〉 =

R
dq |Φq〉 f (q)

Griffin-Hill-Wheeler (GHW) eq.:
R

dq′ H(q, q′) f (q′) = E
R

dq′ I(q, q′) f (q′)

H(q, q′) = 〈Φq |Ĥ|Φq′〉 , I(q, q′) = 〈Φq |Φq′〉

Problem with energy-density functionals (EDF):

Ĥ unkown =⇒ H(q, q′) = ?? for q 6= q′

only the expectation value given: H(q, q′=q) ≡ E(ρq) , ρq(r) = 〈Φq |ρ̂(r)|Φq〉

Analytical continuation in complex q plane =⇒ extension of EDF:
H(q, q′) ≡ E(ρqq′) , ρqq′(r) = 〈Φq |ρ̂(r)|Φq′〉

Still problems if: 1) ρqq′ becomes singular
2) E(ρ) not analytical (e.g. exchange in Slater appr. E ∝ ρ4/3)

Problems circumvented by the Gaussian Overlap Approximation (GOA)
=⇒ this talk: explore performance of (topological) GOA for typical collective motion

(ignoring here the further step to a collective Schrödinger equation)
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The Gaussian Overlap Approximation (GOA)
Experience: overlaps qickly decreasing with |q − q′| for fixed q =

q + q′

2
=⇒ approximate by Gaussians

I(q, q′) ≈ exp
„

iµ(q − q′)− λ

4
(q − q′)2

«
= I(GOA)(q, q′)

H(q, q′) ≈ I(GOA)(q, q′)
»
H0(q) + i(q − q′)H1(q)− (q − q′)2

8λ2 H2(q)

–
λ = 2〈Φq |

←
∂q

→
∂q |Φq〉 , µ = − i

2
〈Φq |

←
∂q −

→
∂q |Φq〉

H0(q) = 〈Φq |Ĥ|Φq〉 , H1(q) = − i
2
〈Φq |

←
∂q Ĥ − Ĥ

→
∂q |Φq〉

H2(q) = 〈Φq |
←
∂q

2
Ĥ − 2

←
∂q Ĥ

→
∂q +Ĥ

→
∂q

2
|Φq〉
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H2(q) = 〈Φq |
←
∂q

2
Ĥ − 2

←
∂q Ĥ

→
∂q +Ĥ

→
∂q

2
|Φq〉

GOA requires collective path ↔ many s.p. states move each a little bit
simple example: N-boson state

I(q, q′) = (〈ϕq |ϕq′〉)N ≈
»
1− (q−q′)〈ϕq |

↔
∂q |ϕq〉 −

(q−q′)2

2
〈ϕq |

←
∂q

→
∂q |ϕq〉

–N

≈ exp
„

iµ(q − q′)− λ

4
(q − q′)2

«
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H2(q) = 〈Φq |
←
∂q

2
Ĥ − 2

←
∂q Ĥ

→
∂q +Ĥ

→
∂q

2
|Φq〉

Advantage of GOA: H0 & H2 can be computed with EDF

H0: trivially as H0 = E(ρq) (expectation value of Slater state)

H1,H2: by analytical continuation (Wick rotation) → ...
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Evaluation of H2 with EDF

define generating momentum: P̂|Φq〉 = i∂q |Φq〉 , 〈Φq |P̂ = −i〈Φq |∂q (is a 1ph operator)

=⇒ |Φq〉 = exp
“

iqP̂
”
|Φ0〉 , 〈Φq | = 〈Φ0| exp

“
−iqP̂

”
H2 = 〈Φq |{P̂, {Ĥ, P̂}}|Φq〉 = double anti-commutator - not yet suited for EDF

rotate to imaginary q-axis q → −iu: (Wick rotation)

=⇒ |Φ̃u〉 = exp
“

uP̂
”
|Φ0〉 , 〈Φ̃u| = 〈Φ0| exp

“
uP̂
”

=⇒ ∂2
u〈Φ̃u|Ĥ|Φ̃u〉 = 〈Φ0|{P̂, {Ĥ, P̂}}|Φ0〉 = H2

and 〈Φ̃u|Ĥ|Φ̃u〉 ≡ E(ρu) , ρu(r) = 〈Φu|ρ̂(r)|Φu〉

=⇒ H2 = ∂2
uE(ρu)|p=0 well defined in DFT

in principle applicable at any order un ≡ analytical continuation

but the Taylor expansion has to exist – not guaranteed for most EDF
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Center-of-mass motion

quality of GOA for norm overlap of 16O

testing GOA for electro-magnetic formfactor of 16O (quality depends on momentum q)

counter example single-particle motion
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GOA for c.m. motion

test case 16O, SLy6 force
path: |ΦR〉 = A

˘Q
α ϕα(rα − R)

¯
←→ ideally collective
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Φ

R
|Φ

R
’>

)
distance R-R’

exact
GOA

GOA is well satisfied

log plot reveals deviations in the far outside wings↔ correct asympt. e−γ|R−R′|

GOA well applicable for observables which concentrate on small |R − R′|
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The nuclear formfactor

charge formfactor:

FC(q) =
R

d3r eiq·rρC(r)

↔ electron scattering
10−2
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10−6
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transferred momentum q  [fm −1]

surface

thickness
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o
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r 
 (
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a
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ic
)

diffraction

radius

r.m.s. radius

r.m.s. radius ↔ ∂2
qF
˛̨̨
q=0

,

diffraction radius ↔ F (q(1)) = 0,
surface thickness ↔ first maximum
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Testing GOA for c.m. projection of the nuclear formfactor

projected state:

|Ψ〉 =
R

dR |ΦR〉

10−2

10−10

10−4

10−6

10−8

10−12

transferred momentum q  [fm −1]

16O

Skyrme M *

surface

thickness

q=2kF

0 1 52 3 4

1

c
h

a
rg

e
 f

o
rm

rf
a
c
to

r 
 (

lo
g

a
ri

th
m

ic
)

full projection

GOA projection

diffraction

radius

r.m.s. radius

looks o.k. for rrms, Rdiffr, σsurf

quality depends on q:
large deviations for q > 2kF

(kF = Fermi momentum)

q > 2kF anyway beyond mean-field description
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GOA for c.m. projection more quantitatively

The difference between GOA and exact projection
for diffraction radius and surface thickness (computed with SkM∗):

12C 16O 40Ca 48Ca 208Pb present quality
δRdiffr [mfm] 35 -5 20 21 10 40
δσsurf [mfm] -30 -4 20 20 9 40

the effect on rrms is negligible (< 5 mfm)

=⇒ correction small compared to typical error on Rdiffr, σsurf

negligible for A > 50 – but beware when improving the precision
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Counter example “non-collective”: shift only 1d5/2,n state in 17O
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shift only 1d

anything else than Gaussian – outcome unpredictable in simple terms
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Rotation

quality of GOA for norm overlap of 22Ne

extension to topologically augmented GOA (topGOA) for rotation

counter example: rotation of 18O (=single-particle motion)
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GOA for rotation

test case 22Ne, SLy6, path: |Φϑ〉 = exp
“
−iϑĴy

”
|Φ0〉

 0
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 1
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difference angle ϑ−ϑ’

22
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exact
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GOA is well satisfied in −π < ϑ < π

but misses the basic structure of the exact I(ϑ, ϑ′): π periodicity in ϑ− ϑ′
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Topologically augmented GOA (topGOA) for rotation

GOA: I(q, q′) ≈ exp
„
−λ

4
(q − q′)2

«
for Cartesian coordinate −∞ < q < +∞

but: rotation angle −π ≤ ϑ ≤ π and/or periodicity ϑ −→ ϑ+ 2π

=⇒ modify q − q′ to distance on the unit ring (sphere) sin(ϑ− ϑ′) :

I(q, q′) ≈ exp
„
−λ

4
sin(ϑ− ϑ′)2

«

and – take care of reflection symmetry = add reflected copy:

I(topGOA)(q, q′) = exp
„
−λ

4
sin(ϑ− ϑ′)2

«
+ exp

„
−λ

4
sin(ϑ− ϑ′ + π)2

«

θ
θ ’
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Topologically augmented GOA (topGOA) for rotation

test case 22Ne, SLy6, path: |Φϑ〉 = exp
“
−iϑĴy

”
|Φ0〉
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topGOA matches exact overlap very well (even for the small system 22Ne)
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Testing rotatonial topGOA for 18O

test case 18O, SLy6, path: |Φϑ〉 = exp
“
−iϑĴy

”
|Φ0〉
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case not really collective
dominated by one s.p.
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the neutron 1d5/2 state

rotation by π/2
yields secondary peak
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Quadrupole deformation

testing GOA for norm overlap in 116Sn

testing GOA for norm overlaps along Sn chain

testing GOA for collective kinetic energy along Sn chain

collective E(2+
1 ) energies along Sn chain
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GOA and exact overlap for quadrupole deformation in 116Sn

difference not really visible =⇒ amplify → ...

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.2 -0.1  0  0.1  0.2

n
o

rm
 o

v
e

rl
a

p
 <

Φ
β
|Φ

β
’>

difference quadr. def. β-β’

β=-0.36 exact
GOA

 0

 0.2

 0.4

 0.6

 0.8

 1

n
o

rm
 o

v
e

rl
a

p
 <

Φ
β
|Φ

β
’>

116
Sn, SLy6 -- compare norm overlaps at various quadrupole deformations

β=-0.1 exact
GOA

-0.2 -0.1  0  0.1  0.2

difference quadr. def. β-β’

β=0.1 exact
GOA

β=0.36 exact
GOA

P.–G. Reinhard (Saclay 2011) A critical evaluation of the Gaussian Overlap Approximation (GOA) 14. September 2011 19 / 33



Diff. “GOA-exact” overlap for quadrupole deformation β in 116Sn

deviation depends on average deformation – but is very small everywhere
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Map of diff. “GOA-exact” overlap for deformation β in 116Sn

confirms results from previous snapshots: deviation is very small everywhere
regions of ”enhanced” deviation systematically at certain average deformations β

116
Sn, SLy6 -- difference |Ιexact-ΙGOA]
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Compare map of diffences
with proton pairing

regions of “enhanced” devia-
tion are clearly correlated to
regions of quickly changing
pairing energy

(as indicated by green vertical lines)
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Average deviations along the chain of Sn isotopes

deviations remain small everywhere, have slight trend to grow for N ↘50
β regions with enhanced deviations are nearly independent of N

Sn-chain, SLy6 -- integrated difference |Ιexact-ΙGOA]

-0.4 -0.2  0  0.2  0.4

average quadr. deformation

 50

 55

 60

 65

 70

 75

 80

n
e

u
tr

o
n

 n
u

m
b

e
r

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

P.–G. Reinhard (Saclay 2011) A critical evaluation of the Gaussian Overlap Approximation (GOA) 14. September 2011 23 / 33



Difference “GOA-exact” for 〈Ψ|T̂ |Ψ〉 along Sn chain

acceptably small – as compared to typical 2+
1 excitation energy ≈ 2 MeV

larger uncertainty next to shell closure ←→ non-collective situation

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 50  60  70  80

<
E

k
in

>
e
x
a
c
t-

<
E

k
in

>
G

O
A

  
[M

e
V

]

neutron number

Sn-chain, SLy6 -- difference <Ekin>exact-<Ekin>GOA

P.–G. Reinhard (Saclay 2011) A critical evaluation of the Gaussian Overlap Approximation (GOA) 14. September 2011 24 / 33



Practical example: E(2+
1 ) energies in Sn and Pb chains

topGOA for vib.&rot. −→ collective Schrödinger eq. in 5-dim. Bohr coordinates
(dynamical) path↔ axial CHF, linear response for vibration & rotation
interpolate potential, mass, inertia, GOA-width to triaxial plane
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mismatches next to shell closures

good description mid−shell

results comply with findings from study of error on collective kinetic energy
however: deviations near shell closures partly to to CHF instead of ATDHF
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Open points in brief
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Norm overlaps for gauge path (particle-number projection)
particle number projection |Ψ〉 =

R
dφ |Φφ〉 ↔ gauge path |Φφ〉 = eiφN̂ |Φ0〉

one shell

semi filled
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could match GOA – but (complex) phase of I is changing regimes
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1ph states: Discrepancy of EDF exp. value and RPA energy

define generating operators: P̂ = −i(â†pâh − h.c.) , Q̂ = â†pâh + h.c.

1ph path: |Φqp〉 = exp
“

ipQ̂
”

exp
“
−iqP̂

”
|Φ0〉 , limiting case, e.g., |Φπ/2,0〉 = â†pâh|Φ0〉

“RPA”=small oscillations along qp⇒ ωRPA ←→ direct EDF evaluation Eph = EEDF[ρph]

test case is an electronic system: Na8 cluster with P&W EDF compared to exact exchange
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results perfectly consistent for exact exchange – but dramatic difference for EDF
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Conclusions
Formal aspects
〈Φq |Ĥ|Φq′〉 not given in DFT, may be recovered by analytical continuation
problems with non-analiticity of energy-density functionals
GOA complies with DFT↔ only lowest order Wick rotation
GOA implies collective deformations

Realistic test cases

center-of-mass ideally collective, works fine for bulk observables
fails for high momenta (small distances)

rotation requires topological extension→ topGOA
works fine for collective rotation (22Ne), fails for s.p. structures (18O)

quadrupole quality varies along the path (beware of quickly changing pairing)
typical uncertainty on collective excitation energies ≈ 0.2 MeV
more uncertainty next to magic shells (s.p. structures)

alltogether GOA is a working approximation – but beware of occasional drop-outs

Future developments
GOA may be improved by extending Wick rotation to 4. order
EDF directly for 〈Φq |Ĥ|Φq′〉
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Appendix: additional material in reserve
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Non-diagonal overlaps by analytical continuation
for simplicity set q = 0, thus considering

H(q) = 〈Φ−q |Ĥ|Φq〉 = 〈Φ0|e−iqP̂Ĥe−iqP̂ |Φ0〉 ≡ 〈e−iqP̂Ĥe−iqP̂〉

= 〈Ĥ〉 − iq〈{Ĥ, P̂}〉 − q2

2
〈{{Ĥ, P̂}, P̂}〉+ i

q3

6
〈{..Ĥ, ..P̂}|{z}

3

〉+
q4

24
〈{..Ĥ, ..P̂}|{z}

4

〉...

turn to purely imaginary coordinate q −→ iu =⇒ |Φ̃u〉 = euP̂ |Φ0〉 =⇒

H̃(u) = 〈Φu|Ĥ|Φu〉 =

= 〈Ĥ〉+ u〈{Ĥ, P̂}〉+
u2

2
〈{{Ĥ, P̂}, P̂}〉+

u3

6
〈{..Ĥ, ..P̂}|{z}

3

〉+
u4

24
〈{..Ĥ, ..P̂}|{z}

4

〉...

DFT identification as H̃(u) = E(ρu)⇒ reconstruct H(q) by analytical continuation

e.g. by identifying ∂n
uH̃ = (−I)n∂n

qH

problem: H̃(u) has to be analytical (Taylor expandable) ←→ usually not provided

GOA requires only existence up to q2 (u2) ←→ usually possible

hope: stepwise improvement of GOA by going to higher order, e.g., q4
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TopGOA in the 5-dimensional quadrupole plane
Cartesian α2µ, µ =−2, ...,+2 ←→ intrinsic (Bohr) (β, γ, ϑx , ϑy , ϑz)

α2µ(β, γ,ϑ) = β

"
cos γD(2)

µ0 (ϑ) + sin γ
D(2)
µ+2(ϑ) + D(2)

µ−2(ϑ)

2

#
GOA appropriate for Cartesian coord.: I(Cart)(α,α′) = e−

1
4 (αµ−α′µ)∗λµν (αν−α′ν )

topGOA for Bohr coordinates by transformation of I(Cart):
1) insert α2µ = α2µ(β, γ,ϑ)
2) transform width matrix λµν to intrinsic λintr

ij

λµν = Wµ
i λ

intr
ij W ν

j

Wµ
i : ∇i = Wµ

i ∇α2µ , i ∈ {β, γ,ϑ)

3) exploit symmetries λintr
ij =

0BBBBBB@
λββ λβγ 0 0 0
λγβ λγγ 0 0 0
0 0 λx 0 0
0 0 0 λy 0
0 0 0 0 λz

1CCCCCCA
practically: evaluate by Maple, feed in directly to Fortran code
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GOA for c.m. motion – excited state

test case 16O, BKN force
consider path built on excited state â†1d5/2

â1p1/2 |Φ〉
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GOA is also well satisfied for this case

=⇒ c.m. motion is most robust
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