# Basics of Group Theory for Quantum Systems

Andreas Nogga, Forschungszentrum Jülich

Lecture series of the Espace de Structure Nucléaire Théorique

- Introduction
- Finite Groups
  - Representations of Groups
  - Reducible/irreducible representations
- Continuous groups
  - Lie groups & Lie algebras
  - Adjoint representation
  - Roots & weights of the Lie algebra
  - Rotation matrices
  - Group measure

### Introduction: further reading



#### Literature

- H. F. Jones Groups, Representations and Physics IOP publishing,1998 (ISBN 978-0750305044)
- H. Georgi Lie Algebras in Particle Physics: From Isospin to Unified Theories Westview Press, 1999 (ISBN 978-0738202334)
- Fl. Stancu Group Theory in Subnuclear Physics Oxford Univ. Press, 1996 (ISBN 978-0198517429)
- M. Creutz Quarks, Gluons and Lattices Cambridge Univ. Press, 1983 (ISBN 0 521 24405 6)
- W. K. Tang, Group theory in physics, World Scientific, 1985 (ISBN 9971-966-57-3)

# Introduction: Symmetries & conservation laws



#### Noether's theorem: symmetries imply conservation laws

For quantum mechanical systems most easily seen in the Heisenberg picture: expectation value for observable corresponding to Hermitian operator  $A_H$ 

$$\langle A_H \rangle = \langle \Psi_H | A_H | \Psi_H \rangle$$

time-dependence of the expectation value due to the time-dependence of the operator

$$\frac{dA_H}{dt} = \frac{\partial A_H}{\partial t} + \frac{1}{i\hbar} \left[ A_H, H \right]$$
 (Ehrenfest theorem)

usually no explicit time-dependence (no time-dependence of Schrödinger operator)  $\frac{\partial A_H}{\partial t} = 0$ 

 $\Rightarrow$   $A_H$  corresponds to a conserved quantity, if  $[A_H, H] = 0$ 

simplest case: invariance under time-translations

$$rac{\partial H}{\partial t}=0$$
 and  $[H,H]=0$   $\Longrightarrow$  the energy  $E=\langle H
angle$  is conserved

Usually, symmetry transformations form "groups"

Group theory helps to explore the consequences of symmetries



# **Finite groups**

September 12, 2011

Page 4

### **Groups: a definition**



A group G is a set of group elements  $\{g\}$  accompanied by a "product" with the properties

- 1.  $g_1, g_2 \in G \implies g_1 \cdot g_2 \in G$  (closure)
- 2.  $g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$  (associativity)
- 3. there is one identity element e with  $e \cdot g = g \cdot e = g$  for all  $g \in G$
- 4. for all  $g \in G$  the inverse  $g^{-1}$  exists with  $g^{-1} \cdot g = g \cdot g^{-1} = e$

In many cases, the number of elements  $N_G$  (order of the group) in the group is finite

Simple physical examples of finite groups:

### **Representations of groups I**



1. first idea to define a group: group multiplication table

| •           | $g_1$           | $g_2$           | • • • |
|-------------|-----------------|-----------------|-------|
| $g_1$       | $g_1 \cdot g_1$ | $g_1 \cdot g_2$ | • • • |
| $g_2$       | $g_2 \cdot g_1$ | $g_2 \cdot g_2$ | • • • |
| •<br>•<br>• | •<br>•          | •<br>•          | •     |

- not well suited for applications and calculations!
- not well suited for larger or infinite groups
- 2. most natural: (linear) representations on a vector space
  - all tools of linear algebra available
  - direct connection to the action of group elements (symmetry transformations) on the quantum mechanical states in the Hilbert space

#### **Representations of groups II**



#### **Ingredients of linear representations**

1. vector space  $\mathcal{L}$  :  $ec{v}, ec{w} \in \mathcal{L}$  (e.g. vectors of  $\mathbb{R}^n$  )

addition  $\vec{v} + \vec{w} \in \mathcal{L}$  and multiplication with a scalar  $\lambda \vec{v} \in \mathcal{L}$  where  $\lambda \in \mathbb{R}, \mathbb{C}$ 

nner product (scalar product) 
$$(\vec{v}, \vec{w}) : \mathcal{L} \times \mathcal{L} \to \mathbb{R}, \mathbb{C}$$
  
is bilinear: for example  $(\vec{u}, \lambda_1 \vec{v} + \lambda_2 \vec{w}) = \lambda_1 (\vec{u}, \vec{v}) + \lambda_2 (\vec{u}, \vec{w})$  and  
 $(\vec{v}, \vec{v}) > 0$  for  $\vec{v} \neq 0$ 

2. linear operators  $D: \mathcal{L} \to \mathcal{L}$  where  $D(\lambda_1 \vec{v} + \lambda_2 \vec{w}) = \lambda_1 D(\vec{v}) + \lambda_2 D(\vec{w})$ 

for example  $n \times n$  matrices 3. mapping  $g \in G \longrightarrow D(g) : \mathcal{L} \to \mathcal{L}$ 

which associates a linear operator with each group element such that the product is preserved

 $D(g_1 \cdot g_2) = D(g_1) \cdot D(g_2)$  and  $D(e) = \mathbb{I}$ 

Note that this implies that D(g) has an inverse (Why?)

It can be shown (for finite groups) that D(g) can always be chosen as a unitary matrix

September 12, 2011

$$D(g)^{\dagger} = D(g)^{-1}$$

Page 7

#### **Example of a representation of S**<sub>n</sub>



vector space: Hilbert space of two spins spanned by

$$|\alpha\rangle = |m_1m_2\rangle = |\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle \quad \alpha = 1, \dots, 4$$

group S<sub>2</sub>:  $\{e = P^2, P\}$ 

define the representation as naturally expected:

$$D\left(\left(\begin{array}{cc}1&2\\i&j\end{array}\right)\right)|m_1m_2\rangle\equiv|m_im_j\rangle$$

explicit matrix representations of the group elements are:

$$D(e) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad D(P) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- the unity is mapped on the unit matrix  $\checkmark$ 

- the group product is mapped on the product of matrices, e.g.  $D(P) \cdot D(P) = D(e)$   $\checkmark$ 

mapping  $g \longrightarrow D(g)$  is indeed a representation!

Note the representation is defined on the quantum mechanical Hilbert space.

### **Reducible/Irreducible representation**







with the same blocks for all  $g \longrightarrow$  The vector space decomposes into **invariant subspaces**.

$$\mathcal{L} = \mathcal{L}_1 \oplus \mathcal{L}_2 \oplus \mathcal{L}_3 \oplus \cdots$$

And this can be done until there are no more small invariant subspaces anymore. The representations within the invariant subspaces are then called **irreducible**.

Reducible representations can be transformed so that subspace separate into even smaller subspaces.

#### What is special about the irreducible representations?

# **Group operation on the Hamiltonian**



If the group is a symmetry group of the Hamiltonian, we find

 $D^{-1}(g) \ H \ D(g) = H$  or [H, D(g)] = H for all members of the group g

Let's assume that  $|\psi
angle$  is an eigenstate of the Hamiltonian:  $H|\psi
angle=E|\psi
angle$ 

Then also  $D(g)|\psi\rangle$  is an eigenstate:  $H D(g)|\psi\rangle = E D(g)|\psi\rangle$ 

On the other hand, all states in an irreducible representation of the symmetry group can be obtained by D(g).

This implies that all states of the irreducible representation are eigenstates of H with the same eigenvalue ( $\implies$  multiplet of states).

Note that this is only true for irreducible representations. If the representation is still reducible, then an eigenstate of H could be in a subspace for which no D(g) connects to the other states.

# **Diagonalization of a spin-spin Hamiltonian**

JÜLICH FORSCHUNGSZENTRUM

Back to our simple example of two spins.

Toy Hamiltonian: 
$$H = ec{\sigma}_1 \cdot ec{\sigma}_2$$

*H* is symmetric under the exchange of particle 1 & 2: symmetry group S<sub>2</sub>  $\{e = P^2, P\}$ Start with our standard basis:  $|\alpha\rangle = |m_1m_2\rangle = |\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\downarrow\rangle, |\downarrow\downarrow\rangle \quad \alpha = 1, \dots, 4$ 

Hamiltonian is non-diagonal in this basis and our representation is reducible, e.g.

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Find four 1-dimensional irreducible representations of  $\{e = P^2, P\}$  spanned by  $\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \qquad |\uparrow\uparrow\rangle \qquad \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \qquad |\downarrow\downarrow\rangle$ 

They turn out to be the eigenstates of H

$$H \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) = -3 \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

$$H|\uparrow\uparrow\rangle = |\uparrow\uparrow\rangle \qquad H|\downarrow\downarrow\rangle = |\downarrow\downarrow\rangle$$
$$H\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$$

although the degeneracy is larger ( additional symmetry) September 12, 2011

#### **Further subjects**



#### Central theorems are **Schur's Lemmas** (first & second)

Criteria whether irreducible representations are equivalent There are only a finite number of non-equivalent, irreducible representations

E.g. orthogonality theorem for two representations  $D^{\mu}$  and  $D^{
u}$  of the group G

of order N (  $d_{\mu}$  is the dimensions of  $D^{\mu}$  )

$$\frac{1}{N} \sum_{g \in G} D^{\mu}_{ij}(g) D^{\mu}_{kl}(g^{-1}) = \frac{\delta_{\mu\nu}}{d_{\mu}} M_{il} \ (M^{-1})_{kj}$$

where  $\delta_{\mu\nu} = \begin{cases} 0 \text{ for not equivalent representations} \\ 1 \text{ for equivalent representations} \end{cases}$ 

and for  $\delta_{\mu\nu} = 1$   $D^{\mu} = M D^{\nu} M^{-1}$ 

This enables systematic decomposition of representations in irreducible representations using so called **characters** (traces of matrices)



# **Continuous groups**

September 12, 2011

Page 13

## **Continuous groups**



E.g. group of rotations around the z-axis is defined by

$$R(\theta) = \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0\\ -\sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

The group product is given by the matrix product.  $\{R(\theta) \mid \theta = 0...2\pi\}$  comprises all group elements

This is a representation on  $\mathbb{R}^3$  and, at the same time, defines the group.

Usual convention:  $R(0) = \mathbb{I}$ 

It is useful to specifically look to the vicinity of  $R(0) = \mathbb{I}$  by Taylor expanding the expression

$$R(\theta) = \mathbb{I} + \theta \left. \frac{\partial R(\theta)}{\partial \theta} \right|_{\theta=0} + \dots = \mathbb{I} + i \theta \left. \underbrace{\frac{1}{i} \left( \begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)}_{\equiv J_3} + \dotsb \right.$$

The hermitian operator  $J_3$  is called a generator (for rotations, it is an angular momentum operator) September 12, 2011 Page 14



# Lie groups



If (as in the example) the group "smoothly" depends on a set of real parameters, it is called a **Lie group** 

In this case 
$$g = g(\alpha_1, \dots, \alpha_r)$$
 and  $g(0) = \mathbb{I}$   
and the Taylor expansion  $g(\epsilon) = \mathbb{I} + i\epsilon_a \underbrace{\left(\frac{1}{i} \left. \frac{\partial g(\alpha)}{\partial \alpha_a} \right|_{\alpha=0}\right)}_{\equiv X_a} + \cdots$ 

defines the hermitian generators  $X_a$  (hermitian since we assume a unitary representation)

It can be shown that already the generators completely define the group!

In most cases, one formally defines the groups elements as

$$g(\alpha) = \exp\left(i\alpha_a X_a\right)$$

- generators completely define the group
- generators are hermitian and will commute with the Hamiltonian —> conserved observables

#### **Structure constants**



We will be interested in other representations of the group than the defining ones

e.g. action of rotations on quantum mechanical wave functions (vector space = function space)

What is unique to the group? —> Group multiplication law!

For continuous groups, the multiplication  $g(\alpha)\cdot g(\beta)\equiv g(\gamma)$ 

defines a function  $\gamma = \gamma(\alpha, \beta)$  that is unique, **not representation dependent** 

Convention implies  $\gamma(0,0) = 0$   $\gamma(\alpha,0) = \alpha$   $\gamma(0,\beta) = \beta$ 

Taylor expanding up to second order of  $g(\alpha) \cdot g(\beta) \equiv g(\gamma)$  and of  $\gamma = \gamma(\alpha, \beta)$  one finds

$$[X_a, X_b] = i \left[ -2 \left. \frac{\partial^2 \gamma(\alpha, \beta)}{\partial \alpha_a \partial \beta_b} \right|_{\alpha, \beta = 0} \right] X_c$$

which defines the **structure constants**  $f_{abc}$ 

and shows that the commutators are a group property

# Lie algebras



The generators are the "basis" of a vector space  $\mathcal{L}$  with elements  $X = \sum \alpha_a X_a$ 

The commutators are defined by the structure constants and are closed within this vector space

 $X, Y \in \mathcal{L} \quad \Longrightarrow \quad [X, Y] \in \mathcal{L}$ 

The define a "product" with the properties

- anticommutativity [X,Y] = -[Y,X]
- Jacobi identity [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0
- [X, Y + Z] = [X, Y] + [X, Z]• distributivity
- $[\alpha X, Y] = \alpha [X, Y]$ • linearity

vector space with a product (with the listed properties) \_\_\_\_\_\_, Lie algebra"



- representations of the Lie algebra are directly related to representations of the group
- Lie algebra is finite dimensional

#### **Adjoint representation**



The generators are the basis states of the Lie algebra and can be the basis of its own representation adjoint representation

We need a (matrix) representation that fulfills the commutator relations  $[X_a, X_b] = i f_{abc} X_c$ 

Then the generators will generate group elements that obey the desired group product

Define the action of the matrix  $T_a = T(X_a)$  by

$$T_a X_b = \{T_a\}_{cb} X_c = i f_{abc} X_c = [X_a, X_b]$$

which means  $\{T_a\}_{cb}\equiv if_{abc}$  if each  $X_a$  is represented by the standard basis in  $\mathbb{C}^r$ 

Using the Jacobi identity and the antisymmetry of the structure constants  $f_{abc}$  in all indices

$$\implies [T_a, T_b] = i f_{abc} T_c$$

The structure constants define a representation of the Lie algebra (adjoint representation)

# **Example of SU(2) - generators**



special (with determinant = 1) unitary matrices in 2 dimensions (defining representation)

| parameter count: | 4 complex matrix elements:        | 8  | parameters |               |
|------------------|-----------------------------------|----|------------|---------------|
|                  | 4 relations because of unitarity: | -4 | parameters |               |
|                  | 1 relation since det=+1:          | -1 | parameter  | 3 parameters! |

elements of the group can be represented using generators

$$M = \exp(i \ \vec{\alpha} \cdot \vec{X})$$

generators are hermitian matrices, from det=+1 follows that they are traceless One possible set of generators is given by the Pauli matrices

$$X_1 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad X_2 = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad X_3 = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Note that this choice is orthogonal with respect to the scalar product defined by the trace

Tr 
$$\left(X_i^{\dagger} \cdot X_j\right) = \frac{1}{2}\delta_{ij}$$
 (the overall constant depends on the representation)

Generators obey the commutator relations of angular momentum operators

$$[X_i, X_j] = i \epsilon_{ijk} X_k$$

### **Example of SU(2) - Cartan generators**



Defining representation is a 2-dimensional irreducible representation

Find set with maximal number of commuting generators, e.g.  $X_3$  and use eigenstates of  $X_3$  as a basis

$$X_3 \ |\mu = \pm \frac{1}{2} \rangle = \pm \frac{1}{2} \ |\mu = \pm \frac{1}{2} \rangle$$

Note that such a basis can always be found in any irreducible representation.

The states of any irreducible representation can be labeled by the eigenvalues of a set of commuting generators (Cartan generators)

In the defining representation of SU(2) the two states have the eigenvalues

$$\mu = \pm \frac{1}{2}$$

This is called the **weight** of the states,

possible weights depend on the irreducible representation

There is one Cartan generator for SU(2)

### Example of SU(2) - Adjoint representation



The adjoint representation in matrix form  $\{T_i\}_{jk} = i \epsilon_{ikj}$  reads

$$T_{1} = i \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \qquad T_{2} = i \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \qquad T_{3} = i \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

again, the eigenstates  $E_{\mu}$  of the Cartan generator  $T_3$  define a basis

$$E_0 = (0, 0, 1)$$
  $E_1 = \frac{1}{\sqrt{2}} (1, i, 0)$   $E_{-1} = \frac{1}{\sqrt{2}} (1, -i, 0)$ 

Now, in the adjoint representation, the vector space is the algebra, therefore the eigenvalue equation can also be written in form of commutators  $\begin{bmatrix} V & E \end{bmatrix} = u E$ 

$$[X_3, E_\mu] = \mu \ E_\mu$$

Since the commutators are independent of the representation, this is a general result The weights of the adjoint representations are called **"roots"** 

All "eigenstates" with  $\mu = 0$  are Cartan operators, since they commute The other  $E_{\mu}$  are called **ladder operators**, since the commutator implies

$$E_{\alpha} |\mu\rangle \propto |\mu + \alpha\rangle$$
 (Why?)

Using the three eigenvectors one find for the ladder operators in the defining representation

$$E_{-1} \propto \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) \qquad \qquad E_1 \propto \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \qquad \qquad \checkmark$$

### **Example of SU(2) - irreducible representation**



SU(2) commutator relations imply many constraints on irreducible representations

$$[E_0, E_{\pm 1}] = \pm E_{\pm 1} \qquad [E_{\pm 1}, E_{-1}] = E_0$$

• states within an irreducible representation are identified by the eigenvalues  $\mu$  of  $E_0 = T_3$ (third component of angular momentum)  $E_0 |j\mu\rangle = \mu |j\mu\rangle$ 

- the different irreducible representations are distinguished by the maximal weight  $j = \mu_{max}$
- j is half-integer and  $\mu=j,j-1,\ldots,-j$

The irreducible representations of the algebra are the ones of the group.

The generators define the matrix (Killing form)  $g_{ij} = 2 \operatorname{Tr}(T_i T_j) = \delta_{ij}$ which allows to define the operator

$$T^2 \equiv g_{ij} \ T_i T_j = T_1^2 + T_2^2 + T_3^2$$

for which

$$[T^2, T_i] = 0$$

Often it makes physically sense to identify the irreps using such a Casimir operator

### **Classification of Lie groups I**



More general now: semi-simple, compact & connected Lie groups (e.g. SU(N), but there are more examples)

**Classification according to Cartan & Weyl** 

find the maximal number of commuting generators: SU(2) → 1,SU(3) → 2, ....



#### $\blacksquare$ { $H_i$ } Cartan generators

• perform simultaneous diagonalization in the adjoint representation

$$[H_i, H_j] = 0 \qquad [H_i, E_{\vec{\alpha}}] = \alpha_i \ E_{\vec{\alpha}} \qquad E_{\vec{\alpha}}^{\dagger} = E_{-\vec{\alpha}}$$

orthogonalize the new set of generators with respect to scalar product

 $(A, B) = k \cdot \operatorname{Tr}(A^{\dagger}B)$ 

• for each pair  $\pm \alpha$  define a set of SU(2) like generators

$$E^{\pm} = \frac{E_{\pm\alpha}}{|\alpha|} \qquad E_0 = \frac{\vec{\alpha} \cdot \vec{H}}{\alpha^2} \qquad \Longrightarrow \qquad [E_0, E^{\pm}] = \pm E^{\pm} \qquad [E^+, E^-] = E_0$$

each non-zero pair of roots defines an independent SU(2) subalgebra

(the new set of generators requires the extention of the parameters space to  $\mathbb{C}^r$ )

# Classification of Lie groups II

All constraints for the weights & roots of SU(2) translate into geometrical constraints of arbitrary semi-simple,compact,... Lie groups/algebras!

Geometrical constraints on roots (and weights), e.g.  $\frac{\vec{\alpha}_i \cdot \vec{\alpha}_j}{\vec{\alpha}_i^2} = \text{half-integer}$ 

Label states of an irrep by eigenvalues of the Cartan generators — weight diagram

E.g. construction of the baryon octet (flavor SU(3)):

• Cartan generators: isospin I<sub>3</sub>, hypercharge Y

roots: 
$$\vec{\alpha}_1 = \pm (1/2, \sqrt{3}/2)$$
  $\vec{\alpha}_2 = \pm (1/2, -\sqrt{3}/2)$   $\vec{\alpha}_3 =$ 

- start from hights weight  $\Sigma^+$
- possible steps are given by root vectors
- number of possible can be deduced
- here: multiplet of 8 states which are expected to be degenerate for flavor-symmetric QCD





#### **Representation of group elements**



Once an irreducible representation is defined, the matrix elements of all generators can be obtained

Group elements are given by, e.g.  $M = \exp(i \ \vec{\alpha} \cdot \vec{X})$ 

Therefore, the irreducible representation also defines the action of the group on all states within this representation!

Note:

- the matrix elements of the group elements do not depend on the actual states, but just on the position within the multiplet
- the group cannot rotate an element of an irreducible representation to other irreducible representations (by definition)

The resulting functions have been calculated in some cases and be used to apply a group element to an arbitrary state.

# **Example: rotation group SO(3)**



The rotation group is generate by angular momentum operators  $\ \{J_i\}$   $i=1,\ldots,3$ 

The algebra fulfills SU(2) commutator relations  $[J_i, J_j] = i \, \epsilon_{ijk} \, J_k$ 

Find a convenient parameterization, e.g. using Euler angles

 $M = \exp(-i\,\alpha\,J_3)\,\,\exp(-i\,\beta\,J_2)\,\,\exp(-i\,\gamma\,J_3)$ 

 $\alpha, \gamma = 0, \dots, 2\pi$   $\beta = 0, \dots, \pi$ 

this choice enables to evaluate the outer rotations trivially

$$D^J_{M'M}(\alpha,\beta,\gamma) \equiv \langle JM' | \exp(-i\,\alpha\,J_3) \, \exp(-i\,\beta\,J_2) \, \exp(-i\,\gamma\,J_3) | JM \rangle$$

 $D^{J}_{M'M}(\alpha,\beta,\gamma) = \exp(-i\,\alpha\,M' - i\,\gamma\,M)\langle JM' | \exp(-i\,\beta\,J_2) | JM \rangle \equiv \exp(-i\,\alpha\,M' - i\,\gamma\,M)d^{J}_{M'M}(\beta)$ 

This defines the Wigner D-and d-functions (analytically known)

As expected, the functions only depend on quantum numbers of irreducible representations (and parameters of the Lie group)

#### **Group measure I**

Finite groups:

 $\frac{1}{N} \sum_{g \in G} f(g) \qquad \text{well defined}$ 

Easy to see that sum is invariant under "group translation" by  $g^\prime$ 

$$\frac{1}{N}\sum_{g\in G}f(g'g) = \frac{1}{N}\sum_{g\in G}f(g)$$

by construction the sum is normalized

$$\frac{1}{N}\sum_{g\in G}1=1$$

#### How to generalize this to continous groups?

| $\equiv$ > |
|------------|
|            |

group integration/group measure

### Group measure II

CH

For the continuous group, we define integrals with a similar "translational invariance" and normalization

$$\int dg \ f(g) = \int dg \ f(g'g) \qquad \int dg \ 1 = 1$$
  
Start with the ansatz 
$$\int dg \ f(g) \equiv \int d^r \alpha \ J(\alpha) \ f(g(\alpha))$$

What is 
$$J(\alpha)$$
?  
Look at  $\int dg \ f(g) = \int d^r \beta \ J(\beta) \ f(g(\beta))$ 

$$= \int d^r \beta \ J(\beta) \ f(g(\alpha(\gamma,\beta))) = \int d^r \alpha \ J(\beta) \left| \frac{\partial \alpha(\gamma,\beta)}{\partial \beta} \right|^{-1} \ f(g(\alpha))$$

since 
$$\gamma$$
 is arbitrary, we choose it such that  

$$J(\alpha) = J(\beta'(\gamma, \alpha)) \left| \frac{\partial \alpha(\gamma, \beta)}{\partial \beta} \right|^{-1} \longrightarrow J(\alpha) = J(0) \left| \frac{\partial \alpha(\gamma, \beta)}{\partial \beta} \right|_{\beta=0}^{-1}$$

The invariant group measure is given by the Jacobian of the group multiplication law J(0) is fixed using the normalization condition

#### **Examples - group measure**



#### simple example: U(1)

1 parameter group, defining representation is one-dimensional and the only irreducible one (expect equivalent ones)

$$D = \exp(i\alpha)$$
  $\alpha = 0, \dots, 2\pi$ 

we read off the group multiplication

$$\alpha(\gamma,\beta) = \beta + \gamma \quad \Longrightarrow \quad \frac{\partial\alpha}{\partial\beta} = 1$$

$$\int dg \ f(g) = \int_0^{2\pi} d\alpha \ J(0) \ f(g(\alpha)) = \frac{1}{2\pi} \int_0^{2\pi} d\alpha \ f(g(\alpha))$$

**Less trivial example:** measure for SO(3)

$$\int dg \ f(g) = \frac{1}{8\pi^2} \int_0^{2\pi} d\alpha \ \int_0^{\pi} \sin(\beta) d\beta \int_0^{2\pi} d\gamma \ f(g(\alpha, \beta, \gamma))$$

where

$$g(\alpha,\beta,\gamma) = \exp(-i\,\alpha\,J_3)\,\,\exp(-i\,\beta\,J_2)\,\,\exp(-i\,\gamma\,J_3)$$

#### **Example - usage group measure**



Generalization of orthogonality theorem to SO(3) irreps

The orthogonality theorem for finite groups can be generalized to Lie groups We assume two identical irreps of SO(3) given by  $j \longrightarrow M = M^{-1} = 1$ 

The theorem then directly translates from discrete group elements to

$$\frac{1}{N}\sum_{g\in G}D_{ij}^{\mu}(g)D_{kl}^{\mu}(g^{-1}) = \frac{1}{N}\sum_{g\in G}D_{ij}^{j}(g)D_{lk}^{j*}(g) = \frac{\delta_{il}\delta_{kj}}{2j+1}$$

to continuous for form using the measure

$$\int dg \ D_{ij}^{\mu}(g) D_{kl}^{\mu}(g^{-1}) = \frac{1}{8\pi^2} \ \int_0^{2\pi} d\alpha \ \int_0^{\pi} \sin(\beta) d\beta \int_0^{2\pi} d\gamma \ D_{ij}^j(\alpha,\beta,\gamma) D_{lk}^{j*}(\alpha,\beta,\gamma) = \frac{\delta_{il} \delta_{kj}}{2j+1}$$