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Introduction: further reading

Literature 

• H. F. Jones  -  Groups, Representations and Physics
IOP publishing,1998   (ISBN 978-0750305044)

• H. Georgi  - Lie Algebras in Particle Physics: From Isospin to Unified Theories
Westview Press, 1999 (ISBN 978-0738202334)

• Fl. Stancu  - Group Theory in Subnuclear Physics
Oxford Univ. Press, 1996 (ISBN 978-0198517429)

• M. Creutz - Quarks, Gluons and Lattices
Cambridge Univ. Press, 1983 (ISBN 0 521 24405 6)

• W. K. Tang, Group theory in physics,
World Scientific, 1985 (ISBN 9971-966-57-3)
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Introduction: Symmetries & conservation laws
Noether‘s theorem:   symmetries imply conservation laws

For quantum mechanical systems most easily seen in the Heisenberg picture:
     expectation value for observable corresponding to Hermitian operator 
 

     time-dependence of the expectation value due to the time-dependence of the operator

                                                                                     (Ehrenfest theorem) 

usually no explicit time-dependence  (no time-dependence of Schrödinger operator)
 
                  corresponds to a conserved quantity, if 

simplest case:   invariance under time-translations

                              and                                            the energy                          is conserved      

Usually, symmetry transformations form „groups“
               Group theory helps to explore the consequences of symmetries
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Finite groups
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Groups: a definition

A group       is a set of group elements          accompanied by a „product“  with the properties
 
1.                                                                (closure)

2.                                                                (associativity)

3.    there is one identity element     with                                   for all 

4.    for all              the inverse         exists with 

In many cases, the number of elements          (order of the group) in the group is finite

Simple physical examples of finite groups:    

• space reflection   

• permutations, e.g. of 3 particles                              :      1 2 3  
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Representations of groups I
1. first idea to define a group:  group multiplication table 

•  not well suited for applications and calculations!
•  not well suited for larger or infinite groups

2. most natural: (linear) representations on a vector space

• all tools of linear algebra available

• direct connection to the action of group elements (symmetry transformations) on the 
quantum mechanical states in the Hilbert space

· g1 g2 · · ·
g1 g1 · g1 g1 · g2 · · ·
g2 g2 · g1 g2 · g2 · · ·
...

...
...

. . .
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1. vector space        :                         (e.g. vectors of           )

             addition                         and  multiplication with a scalar                    where 

       inner product (scalar product) 
                   is bilinear: for example                                                                       and
                                                                             for     

2. linear operators                            where 

        for example               matrices
3. mapping

which associates a linear operator with each group element such that the product is preserved

                                                              and  

Note that this implies that          has an inverse (Why?)

      It can be shown (for finite groups) that           can always be chosen as a unitary matrix                     
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Representations of groups II

� 2 R,C

L ~v, ~w 2 L Rn

~v + ~w 2 L �~v 2 L

(~u,�1~v + �2 ~w) = �1(~u,~v) + �2(~u, ~w)

n⇥ n

g 2 G

(~v, ~w) : L⇥ L ! R,C

(~v,~v) > 0 ~v 6= 0

Ingredients of linear representations

D : L ! L D(�1~v + �2 ~w) = �1D(~v) + �2D(~w)

D(g) : L ! L

D(g1 · g2) = D(g1) ·D(g2) D(e) = 1I

D(g)

D(g)

D(g)† = D(g)�1
7



vector space:  Hilbert space of two spins spanned by  

group S2:   

define the representation as naturally expected:

explicit matrix representations of the group elements are:   

             - the unity is mapped on the unit matrix ✔
             - the group product is mapped on the product of matrices,  e.g.                                        ✔

mapping                         is indeed a representation!

Note the representation is defined on the quantum mechanical Hilbert space. 

D (P ) ·D (P ) = D (e)
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Example of a representation of Sn

|↵i = |m1m2i = | " " i, | " # i, | # " i, | # # i ↵ = 1, . . . , 4

�
e = P 2, P

 

D

✓✓
1 2
i j

◆◆
|m1m2i ⌘ |mimji

D (e) =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA D (P ) =

0

BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CCA

g �! D (g)
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A representation may have a block diagonal form 

with the same blocks for all                    The vector space decomposes into invariant subspaces. 

And this can be done until there are no more small invariant subspaces anymore.
The representations within the invariant subspaces are then called irreducible.

Reducible representations can be transformed so that subspace separate into even smaller
subspaces. 

What is special about the irreducible representations?
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Reducible/Irreducible representation
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D (g) =

0

BBBBBBBBB@

⇤ 0
⇤

0 ⇤

1

CCCCCCCCCA

for all g

L = L1 � L2 � L3 � · · ·

g



If the group is a symmetry group of the Hamiltonian, we find

                                                                    or                                   for all members of the group

Let‘s assume that         is an eigenstate of the Hamiltonian:  

Then also                      is an eigenstate:

On the other hand, all states in an irreducible representation of the symmetry group can be
obtained by            . 

This implies that all states of the irreducible representation are eigenstates of 
with the same eigenvalue  (          multiplet of states).

Note that this is only true for irreducible representations. 
If the representation is still reducible, then an eigenstate of       could be
           in a subspace for which no            connects  to the other states.  
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Group operation on the Hamiltonian

10

D�1(g) H D(g) = H [H,D(g)] = H g

| i H| i = E| i

H D(g)| i = E D(g)| iD(g)| i

D(g)

H

H
D(g)



Back to our simple example of two spins.
Toy Hamiltonian:

      is symmetric under the exchange of particle 1 & 2:   symmetry group S2 
Start with our standard basis:

Hamiltonian is non-diagonal in this basis
and our representation is reducible, e.g. 

Find four 1-dimensional irreducible representations of                                 spanned by 

They turn out to be the eigenstates of      

although the degeneracy is larger (          additional symmetry)

H
1p
2

(| " # i � | # " i) = �3
1p
2

(| " # i � | # " i)
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Diagonalization of a spin-spin Hamiltonian
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H = ~�1 · ~�2

�
e = P 2, P

 

|↵i = |m1m2i = | " " i, | " # i, | # " i, | # # i ↵ = 1, . . . , 4

H =

0

BB@

1 0 0 0
0 �1 2 0
0 2 �1 0
0 0 0 1

1

CCA

H

1p
2

(| " # i � | # " i)
1p
2

(| " # i+ | # " i) | # # i| " " i

H| " " i = | " " i H| # # i = | # # i

H
1p
2

(| " # i+ | # " i) = 1p
2

(| " # i+ | # " i)

H
�
e = P 2, P

 



Central theorems are Schur‘s Lemmas (first & second)
Criteria whether irreducible representations are equivalent
There are only a finite number of non-equivalent, irreducible representations

E.g. orthogonality theorem for two representations       and         of the group 
of order      (     is the dimensions of          ) 

where

and for

This enables systematic decomposition of representations in irreducible representations using 
so called characters (traces of matrices)
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Further subjects
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Dµ D⌫ G
N dµ

�µ⌫ =

⇢
0 for not equivalent representations

1 for equivalent representations

�µ⌫ = 1 Dµ = MD⌫M�1

Dµ

1

N

X

g2G

Dµ
ij(g)D

µ
kl(g

�1) =
�µ⌫
dµ

Mil (M
�1)kj
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Continuous groups
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Most physical symmetries are related to continuous groups
Typically the group elements depend on (real) parameters in this case
The group is defined using  a defining representation 

E.g. group of rotations around the z-axis is defined by

The group product is given by the matrix product. 
                                         comprises all group elements

This is a representation on        and, at the same time, defines the group. 

Usual convention:

It is useful to specifically look to the vicinity of                    by Taylor expanding the expression

     

The hermitian operator       is called a generator (for rotations, it is an angular momentum operator)
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Continuous groups
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R(✓) =

0

@
cos(✓) sin(✓) 0

� sin(✓) cos(✓) 0

0 0 1

1

A

{R(✓) | ✓ = 0 . . . 2⇡}

R(0) = 1I

R(0) = 1I

R(✓) = 1I + ✓
@R(✓)

@✓

����
✓=0

+ · · · = 1I + i ✓
1

i

0

@
0 1 0
�1 0 0
0 0 0

1

A

| {z }
⌘J3

+ · · ·

R3

J3



If (as in the example) the group „smoothly“ depends on a set of real parameters,
it is called a Lie group 

In this case                                          and 

and the Taylor expansion

defines the hermitian generators         (hermitian since we assume a unitary representation) 

It can be shown that already  the generators completely define the group!

In most cases, one formally defines the groups elements as

• generators completely define the group 
• generators are hermitian and will commute with the Hamiltonian            conserved observables
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Lie groups 

15

g = g(↵1, . . . ,↵r) g(0) = 1I

g(✏) = 1I + i✏a

✓
1

i

@g(↵)

@↵a

����
↵=0

◆

| {z }
⌘Xa

+ · · ·

Xa

g(↵) = exp (i↵aXa)



We will be interested in other representations of the group than the defining ones 
        e.g. action of rotations on quantum mechanical wave functions  
                     (vector space = function space)

What is unique to the group?             Group multiplication law! 

For continuous groups, the multiplication

defines a function                         that is unique, not representation dependent

Convention implies

Taylor expanding up to second order of                                      and  of         
one finds 

which defines the structure constants     
                                       and shows that the commutators are a group property
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Structure constants
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g(↵) · g(�) ⌘ g(�)

� = �(↵,�)

�(↵, 0) = ↵ �(0,�) = ��(0, 0) = 0

g(↵) · g(�) ⌘ g(�) � = �(↵,�)

[Xa, Xb] = i

"
�2

@2�(↵,�)

@↵a@�b

����
↵,�=0

#

| {z }
⌘fabc

Xc

fabc



The generators are the „basis“ of a vector space           with elements 

The commutators are defined by the structure constants and are closed within this vector space

The define a „product“ with the properties 

• anticommutativity 

• Jacobi identity 

• distributivity 

• linearity

vector space with a product (with the listed properties)                 „Lie algebra“

    - representations of the Lie algebra are directly related to representations of the group
    - Lie algebra is finite dimensional 
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Lie algebras 
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X =
X

a

↵a XaL

X,Y 2 L [X,Y ] 2 L

[X,Y ] = �[Y,X]

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

[X,Y + Z] = [X,Y ] + [X,Z]

[↵X,Y ] = ↵ [X,Y ]



The generators are the basis states of the Lie algebra and can be the basis of its own 
representation                   adjoint representation 

We need a (matrix) representation that fulfills the commutator relations 

Then the generators will generate group elements that obey the desired group product

Define the action of the matrix                             by

which means                                  if each             is represented by the standard basis in

Using the Jacobi identity and the antisymmetry of the structure constants         in all indices

The structure constants define a representation of the Lie algebra (adjoint representation)
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Adjoint representation
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Ta = T (Xa)

{Ta}cb ⌘ ifabc

Ta Xb = {Ta}cbXc = ifabcXc = [Xa, Xb]

fabc

[Ta, Tb] = i fabc Tc

Xa Cr

[Xa, Xb] = i fabc Xc



special (with determinant = 1) unitary matrices in 2 dimensions  (defining representation)

parameter count:    4 complex matrix elements:           8   parameters
                               4 relations because of unitarity:    -4   parameters
                               1 relation since det=+1:                 -1  parameter                      3 parameters!

elements of the group can be represented using generators

generators are hermitian matrices, from det=+1 follows that they are traceless
One possible set of generators is given by the Pauli matrices 

Note that this choice is orthogonal with respect to the scalar product defined by the trace  

                                                           (the overall constant depends on the representation)

Generators obey the commutator relations of angular momentum operators
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Example of SU(2) - generators
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M = exp(i ~↵ · ~X)

X1 =
1

2

✓
0 1
1 0

◆
X2 =

1

2

✓
0 �i
i 0

◆
X3 =

1

2

✓
1 0
0 �1

◆

[Xi, Xj ] = i ✏ijk Xk

Tr
⇣
X†

i ·Xj

⌘
=

1

2
�ij



Defining representation is a 2-dimensional irreducible representation

Find set with maximal number of commuting generators, e.g. 
and use eigenstates of       as a basis

Note that such a basis can always be found in any irreducible representation. 
The states of any irreducible representation can be labeled by the eigenvalues of a set of 

commuting generators (Cartan generators)

In the defining representation of SU(2) the two states have the eigenvalues

This is called the weight of the states, 
possible weights depend on the irreducible representation

There is one Cartan generator for SU(2)
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Example of SU(2) - Cartan generators

20

X3

X3 |µ = ±1

2
i = ±1

2
|µ = ±1

2
i

X3

µ = ±1

2



The adjoint representation in matrix form                             reads 

again, the eigenstates        of the Cartan generator         define a basis

Now, in the adjoint representation, the vector space is the algebra, therefore the eigenvalue 
equation can also be written in form of commutators  

Since the commutators are independent of the representation, this is a general result 
The weights of the adjoint representations are called „roots“

All „eigenstates“ with              are Cartan operators, since they commute
The other        are called  ladder operators, since the commutator implies 

                                                                                                (Why?)
Using the three eigenvectors one find for the ladder operators in the defining representation  
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Example of SU(2) - Adjoint representation
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{Ti}jk = i ✏ikj

T3 = i

0

@
0 �1 0
1 0 0
0 0 0

1

AT1 = i

0

@
0 0 0
0 0 �1
0 1 0

1

A T2 = i

0

@
0 0 1
0 0 0
�1 0 0

1

A

T3Eµ

E0 = (0, 0, 1)

[X3, Eµ] = µ Eµ

µ = 0
Eµ

E↵ |µi / |µ+ ↵i

✔E1 /
✓

0 1
0 0

◆
E�1 /

✓
0 0
1 0

◆

E1 =
1p
2
(1, i, 0) E�1 =

1p
2
(1,�i, 0)



SU(2) commutator relations imply many constraints on irreducible representations

• states within an irreducible representation are identified by the eigenvalues    of
                                                                                  (third component of angular momentum)

• the different irreducible representations are distinguished by the maximal weight 

•    is half-integer and  

The irreducible representations of the algebra are the ones of the group.

The generators define the matrix  (Killing form) 
which allows to define the operator

for which 

Often it makes physically sense to identify the irreps using such a Casimir operator
 

September 12, 2011 Page

Example of SU(2) - irreducible representation
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[E0, E±1] = ±E±1 [E+1, E�1] = E0

E0 = T3µ

E0 |jµi = µ |jµi

j = µ
max

j µ = j, j � 1, . . . ,�j

✔

gij = 2 Tr(TiTj) = �ij

T 2 ⌘ gij TiTj = T 2
1 + T 2

2 + T 2
3

[T 2, Ti] = 0



More general now: semi-simple, compact & connected Lie groups
                               (e.g. SU(N), but there are more examples)

Classification according to Cartan & Weyl 

• find the maximal number of commuting generators: SU(2)          1 ,SU(3)          2, ....
                                       Cartan generators

• perform simultaneous diagonalization in the adjoint representation

• orthogonalize the new set of generators with respect to scalar product

• for each pair          define a set of SU(2) like generators

each non-zero pair of roots defines an independent SU(2)  subalgebra

(the new set of generators requires the extention of the parameters space to       )
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Classification of Lie groups I
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{Hi}

[Hi, Hj ] = 0 [Hi, E~↵] = ↵i E~↵ E†
~↵ = E�~↵

(A,B) = k · Tr(A†B)

±↵

E± =
E±↵

|↵| E0 =
~↵ · ~H
↵2

[E0, E
±] = ±E±

[E+, E�] = E0

Cr



All constraints for the weights & roots of SU(2) translate into geometrical constraints of arbitrary 
semi-simple,compact,... Lie groups/algebras! 

   Geometrical constraints on roots (and weights), e.g.

Label states of an irrep by eigenvalues of the Cartan generators           weight diagram

E.g. construction of the baryon octet (flavor SU(3)):

• Cartan generators:  isospin I3, hypercharge Y
• roots:

• start from hights weight 
• possible steps are given by root vectors
• number of possible can be deduced
• here: multiplet of 8 states which are expected to be degenerate 

for flavor-symmetric QCD

Label irreps by highest weight or by as many Casimir operators as there are Cartan generators
Simplest Casimir operator is again given by
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Classification of Lie groups II
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~↵i · ~↵j

~↵2
i

= half-integer

I3

Y

~↵3 = ±(1, 0)~↵1 = ±(1/2,
p
3/2) ~↵2 = ±(1/2,�

p
3/2)

pn

⌅0

⌃� ⌃0 ⌃+

⌅�

⇤
⌃+

gijTiTj



Once an irreducible representation is defined, the matrix elements of all generators can be 
obtained

Group elements are given by, e.g.

Therefore, the irreducible representation also defines the action of the group on all states within 
this representation! 

Note: 
• the matrix elements of the group elements do not depend on the actual states, but just on 

the position within the multiplet
• the group cannot rotate an element of an irreducible representation to other irreducible 

representations (by definition)

The resulting functions have been calculated in some cases and be used to apply a group 
element to an arbitrary state.
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Representation of group elements
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M = exp(i ~↵ · ~X)



The rotation group is generate by angular momentum operators

The algebra fulfills SU(2) commutator relations 

Find a convenient parameterization,e.g. using Euler angles

this choice enables to evaluate the outer rotations trivially

This defines the Wigner D-and d-functions (analytically known) 

As expected, the functions only depend on quantum numbers of irreducible representations
     (and parameters of the Lie group)
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Example: rotation group SO(3)
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{Ji} i = 1, . . . , 3

[Ji, Jj ] = i ✏ijk Jk

M = exp(�i↵ J3) exp(�i� J2) exp(�i � J3)

DJ
M 0M (↵,�, �) ⌘ hJM 0| exp(�i↵ J3) exp(�i� J2) exp(�i � J3)|JMi

DJ
M 0M (↵,�, �) = exp(�i↵M 0 � i �M)hJM 0| exp(�i� J2) |JMi ⌘ exp(�i↵M 0 � i �M)dJM 0M (�)

↵, � = 0, . . . , 2⇡

� = 0, . . . ,⇡



Finite groups:                        

                                                    well defined

Easy to see that  sum is invariant under „group translation“ by 

by construction the sum is normalized

How to generalize this to continous groups?

            group integration/group measure 
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Group measure I
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1

N

X

g2G

f(g)

g0

1

N

X

g2G

f(g0g) =
1

N

X

g2G

f(g)

1

N

X

g2G

1 = 1



For the continuous group, we define integrals with a similar „translational invariance“ and 
normalization 

Start with the ansatz

What is           ?

Look at 

since       is arbitrary, we choose it such that 

The invariant group measure is given by the Jacobian of the group multiplication law
       is fixed using the normalization condition

=

Z
dr↵ J(�)

����
@↵(�,�)

@�

����
�1

| {z }
⌘J(↵)

f(g(↵))
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Group measure II
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Z
dg 1 = 1

Z
dg f(g) =

Z
dg f(g0g)

Z
dg f(g) ⌘

Z
dr↵ J(↵) f(g(↵))

J(↵) g(↵) = g(�) · g(�)
Z

dg f(g) =

Z
dr� J(�) f(g(�))

=

Z
dr� J(�) f(g(↵(�,�)))

�

J(↵) = J(�0(�,↵))

����
@↵(�,�)

@�

����
�1

J(↵) = J(0)

����
@↵(�,�)

@�

����
�1

�=0

J(0)



simple example:  U(1)  
    1 parameter group, defining representation is one-dimensional and the only irreducible one    
             (expect equivalent ones)

we read off the group multiplication

Less trivial example: measure for SO(3) 

where  

September 12, 2011 Page

Examples - group measure 
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D = exp(i↵) ↵ = 0, . . . , 2⇡

↵(�,�) = � + � @↵

@�
= 1

Z
dg f(g) =

Z 2⇡

0
d↵ J(0) f(g(↵)) =

1

2⇡

Z 2⇡

0
d↵ f(g(↵))

Z
dg f(g) =

1

8⇡2

Z 2⇡

0
d↵

Z ⇡

0
sin(�)d�

Z 2⇡

0
d� f(g(↵,�, �))

g(↵,�, �) = exp(�i↵ J3) exp(�i� J2) exp(�i � J3)



Generalization of orthogonality theorem to SO(3) irreps

The orthogonality theorem for finite groups can be generalized to Lie groups
We assume two identical irreps of SO(3) given by j

The theorem then directly translates from discrete group elements to 

to  continuous for  form using the measure
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Example - usage group measure 
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M = M�1 = 1I

1

N

X

g2G

Dµ
ij(g)D

µ
kl(g

�1) =
1

N

X

g2G

Dj
ij(g)D

j⇤
lk (g) =

�il�kj
2j + 1

Z
dg Dµ

ij(g)D
µ
kl(g

�1) =
1

8⇡2

Z 2⇡

0
d↵

Z ⇡

0
sin(�)d�

Z 2⇡

0
d� Dj

ij(↵,�, �)D
j⇤
lk (↵,�, �) =

�il�kj
2j + 1


