Breaking and restoring symmetries with the nuclear EDF method

T. Duguet

¹DSM/Irfu/SPhN, CEA Saclay, France

²National Superconducting Cyclotron Laboratory, Department of Physics and Astronomy, Michigan State University, USA

ESNT lectures, Saclay, France, Sept. 12th 2011

Outline		

Single-reference implementation

- Inputs
- Equation of motion
- Breaking symmetries
- Typical applications

3 Empirical parametrization of the EDF kernel

- General strategy
- Skyrme family

Multi-reference implementation

- Limitations of the single-reference implementation
- Restoring symmetries
- Unexpected pathologies
- Typical applications

Outline		

- Single-reference implementation
 - Inputs
 - Equation of motion
 - Breaking symmetries
 - Typical applications

8 Empirical parametrization of the EDF kernel

- General strategy
- Skyrme family

Multi-reference implementation

- Limitations of the single-reference implementation
- Restoring symmetries
- Unexpected pathologies
- Typical applications

Towards a unified theoretical description of nucleonic matter

Theoretical methods

- O "Exact" (VMC, ...)
- \bigcirc Ab-initio (SCGF, BHF, ...)
- Effective (EDF)

Theoretical methods

- **Q** "Exact" (GFMC, NCSM, \dots)
- ❷ Ab-initio (CC, SCGF, IMSRG)
- Effective (SM, EDF)

SR-EDF

EDF kernel 00000000

MR-EDF 000000000000000 Bibliography

Playground versus theoretical methods

The nuclear Energy Density Functional method

- Systematic quantal approach to medium- and heavy-mass nuclei
- Addresses both ground-state and spectroscopic properties
- Next generation of RIB facilities opens up EDF era
- EDF is meant to strongly overlap with ab-initio methods in the next 10 years

Key statements		

Context

- Two-step nuclear EDF method (i) single-reference (ii) multi-reference
- **②** Built by analogy with wave-function based methods (no existence theorem)
- SR-EDF has both similarities and differences with (standard) DFT
- Strongly relies on spontaneous symmetry breaking (SR) and restoration (MR)

MR-EDF 0000000000000

Philosophy of the EDF method

Basic ingredients

• Approach NOT based on $\{H; |\Psi\rangle\}$; i.e. $E = \langle \Psi | H | \Psi \rangle$ with $|\Psi\rangle \approx |\Psi_{\text{exact}}\rangle$

2 Key input is the off-diagonal energy kernel \mathcal{E}_{qq}

$$\mathcal{E}_{qq'} \equiv \mathcal{E}[\langle \Phi_q |; |\Phi_{q'} \rangle] = \mathcal{E}[\rho^{qq'}, \kappa^{qq'}, \kappa^{q'q*}]$$

which is a functional of one-body transition density matrices

$$\rho_{ij}^{qq'} \equiv \frac{\langle \Phi_q | a_j^{\dagger} a_i | \Phi_{q'} \rangle}{\langle \Phi_q | \Phi_{q'} \rangle} \quad ; \quad \kappa_{ij}^{qq'} \equiv \frac{\langle \Phi_q | a_j a_i | \Phi_{q'} \rangle}{\langle \Phi_q | \Phi_{q'} \rangle} \quad ; \quad \kappa_{ij}^{q'q*} \equiv \frac{\langle \Phi_q | a_i^{\dagger} a_j^{\dagger} | \Phi_{q'} \rangle}{\langle \Phi_q | \Phi_{q'} \rangle}$$

with $\{a_i^{\dagger}\}$ = arbitrary single-particle basis; e.g. $i = (\vec{r}, \sigma, \tau)$

- $|\Phi_q\rangle =$ product (Bogoliubov) state with collective label q
- EDF kernel re-sums bulk correlations through functional character
- ◎ Approach relies on symmetry breaking and restoration $(J^2, N, Z, \Pi, ...)$
- Empirical param. (Gogny, Skyrme,...) successful but lack predictive power

SR-EDF

EDF kernel

MR-EDF 0000000000000 Bibliography

Philosophy of the EDF method

Basic ingredients

• Approach NOT based on $\{H; |\Psi\rangle\}$; i.e. $E = \langle \Psi | H | \Psi \rangle$ with $|\Psi\rangle \approx |\Psi_{\text{exact}}\rangle$

2 Key input is the off-diagonal energy kernel $\mathcal{E}_{qq'}$

$$\mathcal{E}_{qq'} \equiv \mathcal{E}[\langle \Phi_q |; | \Phi_{q'} \rangle] = \mathcal{E}[\rho^{qq'}, \kappa^{qq'}, \kappa^{q'q*}]$$

which is a functional of one-body transition density matrices

$$\rho_{ij}^{qq'} \equiv \frac{\langle \Phi_q | a_j^{\dagger} a_i | \Phi_{q'} \rangle}{\langle \Phi_q | \Phi_{q'} \rangle} \quad ; \quad \kappa_{ij}^{qq'} \equiv \frac{\langle \Phi_q | a_j a_i | \Phi_{q'} \rangle}{\langle \Phi_q | \Phi_{q'} \rangle} \quad ; \quad \kappa_{ij}^{q'q*} \equiv \frac{\langle \Phi_q | a_i^{\dagger} a_j^{\dagger} | \Phi_{q'} \rangle}{\langle \Phi_q | \Phi_{q'} \rangle}$$

with $\{a_i^{\dagger}\}$ = arbitrary single-particle basis; e.g. $i = (\vec{r}, \sigma, \tau)$

- $\blacksquare |\Phi_q\rangle = \text{product (Bogoliubov) state with collective label } q$
- EDF kernel re-sums bulk correlations through functional character
- **(a)** Approach relies on symmetry breaking and restoration $(J^2, N, Z, \Pi, ...)$
- \bigcirc Empirical param. (Gogny, Skyrme,...) successful but lack predictive power

MR-EDF 0000000000000

Philosophy of the EDF method

Basic ingredients

• Approach NOT based on $\{H; |\Psi\rangle\}$; i.e. $E = \langle \Psi | H | \Psi \rangle$ with $|\Psi\rangle \approx |\Psi_{\text{exact}}\rangle$

2 Key input is the off-diagonal energy kernel $\mathcal{E}_{qq'}$

$$\mathcal{E}_{qq'} \equiv \mathcal{E}[\langle \Phi_q | ; |\Phi_{q'} \rangle] = \mathcal{E}[\rho^{qq'}, \kappa^{qq'}, \kappa^{q'q*}]$$

which is a functional of one-body transition density matrices

$$\rho_{ij}^{qq'} \equiv \frac{\langle \Phi_q | a_j^{\dagger} a_i | \Phi_{q'} \rangle}{\langle \Phi_q | \Phi_{q'} \rangle} \quad ; \quad \kappa_{ij}^{qq'} \equiv \frac{\langle \Phi_q | a_j a_i | \Phi_{q'} \rangle}{\langle \Phi_q | \Phi_{q'} \rangle} \quad ; \quad \kappa_{ij}^{q'q*} \equiv \frac{\langle \Phi_q | a_i^{\dagger} a_j^{\dagger} | \Phi_{q'} \rangle}{\langle \Phi_q | \Phi_{q'} \rangle}$$

with $\{a_i^{\dagger}\}$ = arbitrary single-particle basis; e.g. $i = (\vec{r}, \sigma, \tau)$

- $\blacksquare ~ | \Phi_q \rangle =$ product (Bogoliubov) state with collective label q
 - EDF kernel re-sums bulk correlations through functional character
- **③** Approach relies on symmetry breaking and restoration $(J^2, N, Z, \Pi, ...)$

Empirical param. (Gogny, Skyrme,...) successful but lack predictive power

MR-EDF 0000000000000

Philosophy of the EDF method

Basic ingredients

• Approach NOT based on $\{H; |\Psi\rangle\}$; i.e. $E = \langle \Psi | H | \Psi \rangle$ with $|\Psi\rangle \approx |\Psi_{\text{exact}}\rangle$

2 Key input is the off-diagonal energy kernel $\mathcal{E}_{qq'}$

$$\mathcal{E}_{qq'} \equiv \mathcal{E}[\langle \Phi_q | ; |\Phi_{q'} \rangle] = \mathcal{E}[\rho^{qq'}, \kappa^{qq'}, \kappa^{q'q*}]$$

which is a functional of one-body transition density matrices

$$\rho_{ij}^{qq'} \equiv \frac{\langle \Phi_q | a_j^{\dagger} a_i | \Phi_{q'} \rangle}{\langle \Phi_q | \Phi_{q'} \rangle} \quad ; \quad \kappa_{ij}^{qq'} \equiv \frac{\langle \Phi_q | a_j a_i | \Phi_{q'} \rangle}{\langle \Phi_q | \Phi_{q'} \rangle} \quad ; \quad \kappa_{ij}^{q'q*} \equiv \frac{\langle \Phi_q | a_i^{\dagger} a_j^{\dagger} | \Phi_{q'} \rangle}{\langle \Phi_q | \Phi_{q'} \rangle}$$

with $\{a_i^{\dagger}\}$ = arbitrary single-particle basis; e.g. $i = (\vec{r}, \sigma, \tau)$

- $\blacksquare \ |\Phi_q\rangle = {\rm product} \ ({\rm Bogoliubov})$ state with collective label q
- EDF kernel re-sums bulk correlations through functional character
- **③** Approach relies on symmetry breaking and restoration $(J^2, N, Z, \Pi, ...)$
- Empirical param. (Gogny, Skyrme,...) successful but lack predictive power

	SR-EDF 00000000000000		
Outline			

Single-reference implementation

- Inputs
- Equation of motion
- Breaking symmetries
- Typical applications

3 Empirical parametrization of the EDF kernel

- General strategy
- Skyrme family

Multi-reference implementation

- Limitations of the single-reference implementation
- Restoring symmetries
- Unexpected pathologies
- Typical applications

	SR-EDF ••••		
Outline			

2 Single-reference implementation

- Inputs
- Equation of motion
- Breaking symmetries
- Typical applications

3 Empirical parametrization of the EDF kernel

- General strategy
- Skyrme family

Multi-reference implementation

- Limitations of the single-reference implementation
- Restoring symmetries
- Unexpected pathologies
- Typical applications

 $\textcircled{0} \text{ Symmetry breaking } \hat{N} | \Phi \rangle \neq N | \Phi \rangle$

MR-EDF 000000000000

Single-reference implementation

First level of implementation ("mean-field")

- Invokes single state $|\Phi_q\rangle$ and diagonal energy kernel $\mathcal{E}_{qq} = \mathcal{E}[\rho^{qq}, \kappa^{qq}, \kappa^{qq*}]$
- $\bigcirc \ |\Phi_q\rangle$ may break symmetries and acquire finite order parameters $|q|\,e^{i\varphi_q}$
- **9** Provides first approx to BE, $\langle r_{ch}^2 \rangle$, $\rho_{\tau}(\vec{r})$, β_2 and ESPE $\{\epsilon_{\alpha}\}$

Single-particle basis $\{|\alpha\rangle\}$

 $\blacksquare \ a^{\dagger}_{\alpha}|0\rangle = |\alpha\rangle$

$$\psi_{\alpha}(\vec{r}\sigma\tau) \equiv \langle \vec{r}\sigma\tau | \alpha \rangle$$

Diagonal density matrices

$$\begin{array}{ll} \rho_{\alpha\beta} & \equiv & \displaystyle \frac{\langle \Phi | a_{\beta}^{\dagger} a_{\alpha} | \Phi \rangle}{\langle \Phi | \Phi \rangle} = + \rho_{\beta\alpha}^{*} \\ \kappa_{\alpha\beta} & \equiv & \displaystyle \frac{\langle \Phi | a_{\beta} a_{\alpha} | \Phi \rangle}{\langle \Phi | \Phi \rangle} = - \kappa_{\beta\alpha} \end{array}$$

Bogoliubov state (i)

Product of quasi-particle operators

$$|\Phi\rangle \equiv \prod_{\mu} \beta_{\mu} |0\rangle$$

$$\beta_{\mu} \equiv \sum_{\alpha} U_{\alpha\mu}^* a_{\alpha} + V_{\alpha\mu}^* a_{\alpha}^+$$

 \bigcirc Unitary transformation $\begin{pmatrix} U \\ U \end{pmatrix}$

$$V^{\dagger} V^{\dagger} V^{\dagger}$$

 $V^{T} U^{T}$

Vacuum of quasi-particle operators

$$\beta_{\mu} \left| \Phi \right\rangle = 0 \ \forall \mu$$

(a) Symmetry breaking $\hat{N}|\Phi\rangle \neq N|\Phi\rangle$

Diagonal density matrices

$$\begin{split} \rho_{\alpha\beta} &\equiv \quad \frac{\langle \Phi | a_{\beta}^{\dagger} a_{\alpha} | \Phi \rangle}{\langle \Phi | \Phi \rangle} = + \rho_{\beta\alpha}^{*} \\ \kappa_{\alpha\beta} &\equiv \quad \frac{\langle \Phi | a_{\beta} a_{\alpha} | \Phi \rangle}{\langle \Phi | \Phi \rangle} = - \kappa_{\beta\alpha} \end{split}$$

• In basis $\{c_{\nu}^{\dagger}\}$ diagonalizing ρ

$$|\Phi\rangle = \prod_{\nu>0} \left(u_{\nu} + v_{\nu} c_{\nu}^{+} c_{\bar{\nu}}^{+} \right) |0\rangle$$

BCS-like state with occupations $\rho_{\nu\nu} = v_{\nu}^2$

	SR-EDF		
	000 000 0000000		
~ ~			

Outline

Introduction

2 Single-reference implementation

• Inputs

• Equation of motion

- Breaking symmetries
- Typical applications

3 Empirical parametrization of the EDF kernel

- General strategy
- Skyrme family

Multi-reference implementation

- Limitations of the single-reference implementation
- Restoring symmetries
- Unexpected pathologies
- Typical applications

	SR-EDF 000 000 0000000					
Ansatz						
SR-EDF ansa	ntz					
Diagonal	■ Diagonal energy kernel postulated as a functional $\mathcal{E} \equiv \mathcal{E}[\rho, \kappa, \kappa^*]$					
■ The energy results from the minimization of the diagonal kernel						
	E^{SR}	$\equiv \operatorname{Min}_{\{ \Phi\rangle\}} \mathcal{E}[\mu]$	$[0,\kappa,\kappa^*]$			
within the	manyfold spanned by	product states	$ \Phi angle$			

Bulk correlations, i.e. smoothly varying with (N, Z), resummed into $\mathcal{E}[\rho, \kappa, \kappa^*]$

Minimization and constraints

- $\textcircled{0} \ \text{Independent variables are } \{\rho_{\alpha\beta},\rho^*_{\alpha\beta},\kappa_{\alpha\beta},\kappa^*_{\alpha\beta} \ \text{ for } \ \beta\leq\alpha\}$
-) The property that $\mathcal{R}^2 = \mathcal{R}$ must be enforced
 - Matrix Λ of Lagrange parameters (one per isospin au)

Observation $\langle \Phi | \hat{N} | \Phi \rangle = \text{Tr} \{ \rho \} = N$ as a free variation would lead to $E^{\text{SR}} \to -\infty$

• Lagrange parameter λ (one per isospin τ)

	SR-EDF 000 000 0000000				
Ansatz					
SR-EDF ansa	ıtz				
■ Diagonal energy kernel postulated as a functional $\mathcal{E} \equiv \mathcal{E}[\rho, \kappa, \kappa^*]$					
■ The energy results from the minimization of the diagonal kernel					
$E^{\mathrm{SR}} \equiv \mathrm{Min}_{\{ \Phi\rangle\}} \mathcal{E}[\rho,\kappa,\kappa^*]$					

within the manyfold spanned by product states $|\Phi\rangle$

Bulk correlations, i.e. smoothly varying with (N, Z), resummed into $\mathcal{E}[\rho, \kappa, \kappa^*]$

Minimization and constraints

- Independent variables are $\{\rho_{\alpha\beta}, \rho^*_{\alpha\beta}, \kappa_{\alpha\beta}, \kappa^*_{\alpha\beta} \text{ for } \beta \leq \alpha\}$
- **②** The property that $\mathcal{R}^2 = \mathcal{R}$ must be enforced
 - ▶ Matrix Λ of Lagrange parameters (one per isospin τ)

• Constrain $\langle \Phi | \hat{N} | \Phi \rangle = \text{Tr} \{ \rho \} = N$ as a free variation would lead to $E^{\text{SR}} \to -\infty$

 \blacktriangleright Lagrange parameter λ (one per isospin τ)

	SR-EDF 000 0000 0000000		
Equation of moti	on		

Minimization

• Set
$$\delta_{\mathcal{R}} \left[\mathcal{E}[\rho,\kappa,\kappa^*] - \lambda \operatorname{Tr}\{\rho\} - \operatorname{Tr}\{\Lambda(\mathcal{R}^2 - \mathcal{R})\} \right] = 0$$
 leads to $[\mathcal{H},\mathcal{R}] = 0$
$$\mathcal{H} \equiv \begin{pmatrix} h - \lambda & \Delta \\ -\Delta^* & -h^* + \lambda \end{pmatrix}$$

where the effective one-body fields are defined through

$$h_{\alpha\gamma} \equiv \frac{\delta \mathcal{E}[\rho,\kappa,\kappa^*]}{\delta \rho_{\gamma\alpha}} \quad ; \quad \Delta_{\alpha\gamma} \equiv \frac{\delta \mathcal{E}[\rho,\kappa,\kappa^*]}{\delta \kappa_{\alpha\gamma}^*}$$

This is equivalent to solving a Bogoliubov-De-Gennes eigenvalue problem

$$\mathcal{H} \begin{pmatrix} U \\ V \end{pmatrix}_{\mu} = E_{\mu} \begin{pmatrix} U \\ V \end{pmatrix}_{\mu}$$

where $\{(U, V)_{\mu}\}$ and $\{E_{\mu}\}$ denote quasi-particle states and energies

 \bigcirc h drives the effective shell structure while Δ drives the pair scattering

• Iterative procedure $\mathcal{H}[\{(U, V)^{[n]}_{\mu}\}] \rightarrow \{(U, V)^{[n+1]}_{\mu}\} \rightarrow \mathcal{H}[\{(U, V)^{[n+1]}_{\mu}\}] \rightarrow \dots$

	SR-EDF 000 0000 0000000		
Equation of moti	on		

Minimization

• Set
$$\delta_{\mathcal{R}} \left[\mathcal{E}[\rho, \kappa, \kappa^*] - \lambda \operatorname{Tr}\{\rho\} - \operatorname{Tr}\{\Lambda(\mathcal{R}^2 - \mathcal{R})\} \right] = 0$$
 leads to $[\mathcal{H}, \mathcal{R}] = 0$
$$\mathcal{H} \equiv \begin{pmatrix} h - \lambda & \Delta \\ -\Delta^* & -h^* + \lambda \end{pmatrix}$$

where the effective one-body fields are defined through

$$h_{\alpha\gamma} \equiv \frac{\delta \mathcal{E}[\rho, \kappa, \kappa^*]}{\delta \rho_{\gamma\alpha}} \quad ; \quad \Delta_{\alpha\gamma} \equiv \frac{\delta \mathcal{E}[\rho, \kappa, \kappa^*]}{\delta \kappa_{\alpha\gamma}^*}$$

• This is equivalent to solving a Bogoliubov-De-Gennes eigenvalue problem

$$\mathcal{H}\begin{pmatrix} U\\V \end{pmatrix}_{\mu} = E_{\mu} \begin{pmatrix} U\\V \end{pmatrix}_{\mu}$$

where $\{(U, V)_{\mu}\}$ and $\{E_{\mu}\}$ denote quasi-particle states and energies

 \bigcirc h drives the effective shell structure while Δ drives the pair scattering

• Iterative procedure $\mathcal{H}[\{(U, V)^{[n]}_{\mu}\}] \rightarrow \{(U, V)^{[n+1]}_{\mu}\} \rightarrow \mathcal{H}[\{(U, V)^{[n+1]}_{\mu}\}] \rightarrow \dots$

	SR-EDF 000 0000 0000000		
Equation of moti	on		

Minimization

• Set
$$\delta_{\mathcal{R}} \left[\mathcal{E}[\rho,\kappa,\kappa^*] - \lambda \operatorname{Tr}\{\rho\} - \operatorname{Tr}\{\Lambda(\mathcal{R}^2 - \mathcal{R})\} \right] = 0$$
 leads to $[\mathcal{H},\mathcal{R}] = 0$
$$\mathcal{H} \equiv \begin{pmatrix} h - \lambda & \Delta \\ -\Delta^* & -h^* + \lambda \end{pmatrix}$$

where the effective one-body fields are defined through

$$h_{\alpha\gamma} \equiv \frac{\delta \mathcal{E}[\rho, \kappa, \kappa^*]}{\delta \rho_{\gamma\alpha}} \quad ; \quad \Delta_{\alpha\gamma} \equiv \frac{\delta \mathcal{E}[\rho, \kappa, \kappa^*]}{\delta \kappa_{\alpha\gamma}^*}$$

• This is equivalent to solving a Bogoliubov-De-Gennes eigenvalue problem

$$\mathcal{H}\begin{pmatrix} U\\V \end{pmatrix}_{\mu} = E_{\mu} \begin{pmatrix} U\\V \end{pmatrix}_{\mu}$$

where $\{(U, V)_{\mu}\}$ and $\{E_{\mu}\}$ denote quasi-particle states and energies

) h drives the effective shell structure while Δ drives the pair scattering

• Iterative procedure $\mathcal{H}[\{(U, V)^{[n]}_{\mu}\}] \rightarrow \{(U, V)^{[n+1]}_{\mu}\} \rightarrow \mathcal{H}[\{(U, V)^{[n+1]}_{\mu}\}] \rightarrow \dots$

EDF methods

	SR-EDF ○○○○○○○○○○○○○○		
Outline			

Single-reference implementation

- Inputs
- Equation of motion
- Breaking symmetries
- Typical applications

3 Empirical parametrization of the EDF kernel

- General strategy
- Skyrme family

4 Multi-reference implementation

- Limitations of the single-reference implementation
- Restoring symmetries
- Unexpected pathologies
- Typical applications

	SR-EDF 0000000 0000 000		
Symmetries			

Symmetries of H and quantum numbers

In nuclear physics [X, H] = 0 for $\{X\} = \{N, Z, \vec{P}, J^2, J_z, \Pi, \mathcal{T}^2\}$

- Solutions $|\Psi_i^x\rangle$ are eigenstates of $\{X\}$ and labeled by quantum numbers $\{x\}$
- The nuclear part of H also nearly commutes with isospin operators (T^2, T_z)

In which space do we actually vary $|\Phi angle/\{ ho,\kappa\}$ when minimizing $\mathcal{E}[ho,\kappa,\kappa^*]$

- Natural to vary such that $|\Phi\rangle$ carries the same quantum numbers $\{x\}$ as $|\Psi_i^x\rangle$
- Too constraining for simple product states
- \clubsuit Let $|\Phi\rangle$ span several irreducible representations of the symmetry group ${\cal G}$

$$|\Phi\rangle \equiv \sum_{x} c_x |\Theta^x\rangle$$

 $\checkmark E^{\rm SR}$ lower than for a symmetry-conserving variation

 $\mathbf{X} E^{SR}$ does not access the ground-state energy but the one of a wave-packet

$$E^{\mathrm{SR}} = \sum |c_x|^2 E^x$$

SR-EDF	
000000000000000000000000000000000000000	

Symmetries

Symmetries of H and quantum numbers

- In nuclear physics [X, H] = 0 for $\{X\} = \{N, Z, \vec{P}, J^2, J_z, \Pi, \mathcal{T}^2\}$
- Solutions $|\Psi_i^x\rangle$ are eigenstates of $\{X\}$ and labeled by quantum numbers $\{x\}$
- The nuclear part of H also nearly commutes with isospin operators (T^2, T_z)

In which space do we actually vary $|\Phi\rangle/\{\rho,\kappa\}$ when minimizing $\mathcal{E}[\rho,\kappa,\kappa^*]$?

- Natural to vary such that $|\Phi\rangle$ carries the same quantum numbers $\{x\}$ as $|\Psi_i^x\rangle$
- ➡ Too constraining for simple product states
- \clubsuit Let $|\Phi\rangle$ span several irreducible representations of the symmetry group ${\cal G}$

$$|\Phi\rangle \equiv \sum_{x} c_x |\Theta^x\rangle$$

 $\checkmark~E^{\rm SR}$ lower than for a symmetry-conserving variation

 $\pmb{\varkappa}~E^{\rm SR}$ does not access the ground-state energy but the one of a wave-packet

$$E^{\text{SR}} = \sum_{x} |c_x|^2 E^x$$

MR-EDF 00000000000000

Physical content and patterns

Origin and manifestation of spontaneous symmetry breaking

	Group		Correlations	
	Label	Casimir	V^{NN}	Internal motion
Translation \vec{a}	T(3)	\hat{P}	Short range	Spatial localization
Rotation φ	U(1)	\hat{N}	S-wave virtual state	Pairing
Rotation α, β, γ	SO(3)	\hat{J}^2	Quadrupquadrup.	Angular localization

Nuclei and spontaneous symmetry breaking

All but doubly-magic ones	
All but singly-magic ones	

Symmetries are enforced or relaxed according to which nucleus is studied

Enforcing symmetries leads to a great gain in CPU time

MR-EDF 00000000000000

Physical content and patterns

Origin and manifestation of spontaneous symmetry breaking

	Group		Correlations	
	Label	$\operatorname{Casimir}$	V^{NN}	Internal motion
Translation \vec{a}	T(3)	\hat{P}	Short range	Spatial localization
Rotation φ	U(1)	\hat{N}	S-wave virtual state	Pairing
Rotation α,β,γ	SO(3)	\hat{J}^2	Quadrupquadrup.	Angular localization

Nuclei and spontaneous symmetry breaking

	Nuclei	Excitation pattern
Translation \vec{a}	All of them	Surface vibrations
Rotation φ	All but doubly-magic ones	Energy gap
Rotation α, β, γ	All but singly-magic ones	Rotational bands

Symmetries are enforced or relaxed according to which nucleus is studied

Enforcing symmetries leads to a great gain in CPU time

- Symmetry breaking monitored by an order parameter $q \equiv |q| e^{i \operatorname{Arg}(q)}$
- E^{SR} is independent of Arg(q) such that $\mathcal{E}_{qq} = \mathcal{E}_{|q||q|}$
- **③** The magnitude |q| may vary when minimizing \mathcal{E}_{qq}
 - Variation at fixed |q| = 0 provides symmetry-conserving solution
 - **②** Free variation $(|q| \neq 0)$ may provide a lower solution in the larger space
 - **③** Constrained variation via Lagrange $(-\lambda_q \langle \Phi_q | \hat{Q} | \Phi_q \rangle)$ to access PES

Minimization and correlation energy

Breaking of S0(3) and spatial deformation

- Order parameter relates to
 - The non-zero multipoles of the density distribution, i.e. $|q| \equiv \rho_{\lambda\mu}$
 - **9** The orientation of the density distribution, i.e. $\operatorname{Arg}(q) \equiv (\alpha, \beta, \gamma)$
- **②** Captures static long-range multipole-multipole correlations

MR-EDF 000000000000

Minimization and correlation energy

Breaking of U(1) and pairing deformation

- Order parameter relates to
 - The non-zero anomalous density, i.e. $|q| \equiv |\kappa|$
 - **②** The orientation of κ in gauge space, i.e. $\operatorname{Arg}(q) \equiv \alpha$
- Captures static long-range pairing correlations

SR-EDF

EDF kernel 00000000 MR-EDF 0000000000000 Bibliography

Minimization and correlation energy

Fingerprint at finite density of n-n virtual state in vacuum

- Additional ground-state correlations
- Odd-even mass staggering (OEMS)
- Gap opens up in individual excitation spectrum
- \blacksquare Moment of inertia \nearrow with $J \Longleftrightarrow$ Meissner effect in superconductors

	SR-EDF		
0			

Outline

Introduction

Single-reference implementation

- Inputs
- Equation of motion
- Breaking symmetries
- Typical applications

3 Empirical parametrization of the EDF kernel

- General strategy
- Skyrme family

Multi-reference implementation

- Limitations of the single-reference implementation
- Restoring symmetries
- Unexpected pathologies
- Typical applications

Calculations

SystematicsShells

Superfluidity

Reactions

DensitiesHalosRadii

SR-EDF

EDF kernel

MR-EDF 000000000000 Bibliography

Typical results from SR-EDF calculations

Ground-state properties over the nuclear chart

■ Large-scale deformed calculations in one day

- Masses, deformation, radii, s.p.e energies...
- Tables for experimentalists/astrophysics
- Ex: http://www-phynu.cea.fr/HFB-Gogny.htm

[S. Hilaire and M. Girod, Eur. Phys. J. A33 (2007) 237]

SR-EDF

EDF kernel 00000000 MR-EDF 0000000000000

Typical results from SR-EDF calculations

Calculations

- Systematics
- Shells
- Output Densities
- 4 Halos
- Adii
- Superfluidity
- Reactions

Spherical shell-structure in Sn and Pb isotopes

- $\epsilon_{nlj\tau} \equiv$ centroid of one-nucleon separation energies
 - [T. D., J. Sadoudi, (2011) unpublished]

Too spread out to anticipate correlations

- \blacksquare Current interest focuses on $N\!-\!Z$ behavior
- [M. Bender, G. F. Bertsch, P.-H. Heenen, PRC73 (2006) 034322]

SR-EDF

EDF kernel

MR-EDF 0000000000000 Bibliography

Typical results from SR-EDF calculations

- $\ \ \, \blacksquare \ \, \rho_{\rm ch}(\vec{r})\approx \rho_p(\vec{r})$
- Saturation density $\rho_{sat} = 2\rho_p(0) \approx 0.16 \text{ fm}^{-3}$
- Stable nuclei = good reproduction of data
- No measure yet in unstable nuclei
- [V. Rotival and T. D., unpublished]

10

12

Typical results from SR-EDF calculations

- Saturation density $\rho_{sat} \approx 2\rho_p(0) \approx 0.16 \text{ fm}^{-3}$
- Sensitive to shell effects
- Sensitive to correlations
- [V. Rotival and T. D., unpublished]
Introduction SR-EDF EDF kernel MR-EDF Biblio

Typical results from SR-EDF calculations

Calculations

- Systematics
- Shells
- Output Densities
- Halos
- Adii
- Superfluidity
- Reactions

- Nuclei with anomalous extensions
- Predictions done over the nuclear chart
- Can only exist very close to neutron drip-line
- Best candidates are Cr and Fe isotopes
- [V. Rotival, T. D., PRC79 (2009) 054308]
- [V. Rotival, K. Bennaceur, T. D., PRC79 (2009) 054309]

SR-EDF

EDF kernel

MR-EDF 000000000000 Bibliography

Typical results from SR-EDF calculations

Calculations

- Systematics
- Shells
- Output Densities
- Halos
- Adii
- Superfluidity
- Reactions

- Nuclei with anomalous extensions
- Predictions done over the nuclear chart
- Can only exist very close to neutron drip-line
- Best candidates are Cr and Fe isotopes

[V. Rotival, T. D., PRC79 (2009) 054308]

[V. Rotival, K. Bennaceur, T. D., PRC79 (2009) 054309]

SR-EDF

EDF kernel

MR-EDF 000000000000 Bibliography

Typical results from SR-EDF calculations

Calculations

- Systematics
- Shells
- Output Densities
- Halos
- Adii
- Superfluidity
- Reactions

- Good reproduction of data
- Correct N-Z dependence
- Importance of static deformation

[M. Bender, G. F. Bertsch, P.-H. Heenen, PRC73 (2006) 034322]

SR-EDF

EDF kernel

MR-EDF 0000000000000 Bibliography

Typical results from SR-EDF calculations

Systematic of pairing gap in semi-magic nuclei

- The nucleus is superfluid
- Odd-even mass staggering is a measure of Δ_{τ}
- All low-energy nuclear properties impacted

[T. Lesinski, K. Hebeler, T. D., A. Schwenk, JPG (2011) in press]

SR-EDF

EDF kernel 00000000 MR-EDF 000000000000 Bibliography

Typical results from SR-EDF calculations

Reactions from time-dependent EDF calculations

Calculations

- Systematics
- Shells
- Output Densities
- Halos
- Adii
- Superfluidity
- Reactions

- Ex: fusion at the Coulomb barrier $(^{16}O + ^{208}Pb)$
- Pre-transfer, barrier distribution...
- Note: full EDF essential to solve old problems
- [C. Simenel and B. Avez, arXiv:0711.0934]

	EDF kernel 00000000	
Outline		

2 Single-reference implementation

- Inputs
- Equation of motion
- Breaking symmetries
- Typical applications

3 Empirical parametrization of the EDF kernel

- General strategy
- Skyrme family

Multi-reference implementation

- Limitations of the single-reference implementation
- Restoring symmetries
- Unexpected pathologies
- Typical applications

	EDF kernel	
Outline		

Single-reference implementation

- Inputs
- Equation of motion
- Breaking symmetries
- Typical applications

8 Empirical parametrization of the EDF kernel

- General strategy
- Skyrme family

Multi-reference implementation

- Limitations of the single-reference implementation
- Restoring symmetries
- Unexpected pathologies
- Typical applications

	EDF kernel 0000000	
Outline		

2 Single-reference implementation

- Inputs
- Equation of motion
- Breaking symmetries
- Typical applications

3 Empirical parametrization of the EDF kernel

- General strategy
- Skyrme family

Multi-reference implementation

- Limitations of the single-reference implementation
- Restoring symmetries
- Unexpected pathologies
- Typical applications

Introduction SR-EDF EDF kernel MR-EDF Bibliography Quasi-local form of $\mathcal{E} = \mathcal{E}[\rho, \kappa, \kappa^*]$

Strategy followed below

- Diagonal kernel $\mathcal{E}_{qq} \equiv \mathcal{E}[\rho, \kappa, \kappa^*]$
- **②** Focus on the ρ dependence

Scalar and vector non-local densities

$$\rho_{\tau}(\vec{r}, \vec{r}') \equiv \sum_{\sigma\sigma'} \rho_{\vec{r}\sigma\tau\vec{r}\,'\sigma'\tau} 1^{\sigma'\sigma}$$
$$s_{\tau,\nu}(\vec{r}, \vec{r}') \equiv \sum_{\sigma\sigma'} \rho_{\vec{r}\sigma\tau\vec{r}\,'\sigma'\tau} \sigma_{\nu}^{\sigma'\sigma}$$

Time-even local densities

$$\rho_{\tau}(\vec{r}) \equiv \rho_{\tau}(\vec{r},\vec{r}')|_{\vec{r}=\vec{r}'}$$

Matter density

Kinetic density

Spin-current tensor density

Spin-orbit density

$$\tau_{\tau}(\vec{r}) \equiv \sum_{\mu} \nabla_{\mu} \nabla'_{\mu} \rho_{\tau}(\vec{r}, \vec{r}')|_{\vec{r}=\vec{r}'}$$

$$J_{\tau,\mu\nu}(\vec{r}) \equiv \frac{i}{2} \left(\nabla'_{\mu} - \nabla_{\mu} \right) s_{\tau,\nu}(\vec{r}, \vec{r}')|_{\vec{r}=\vec{r}'}$$

$$J_{\tau,\kappa}(\vec{r}) \equiv \sum_{\mu,\nu=x}^{z} \epsilon_{\kappa\mu\nu} J_{\tau,\mu\nu}(\vec{r})$$

EDF methods

Strategy followed below

- Diagonal kernel $\mathcal{E}_{qq} \equiv \mathcal{E}[\rho, \kappa, \kappa^*]$
- **②** Focus on the ρ dependence

Scalar and vector non-local densities

$$\rho_{\tau}(\vec{r}, \vec{r}') \equiv \sum_{\sigma\sigma'} \rho_{\vec{r}\sigma\tau\vec{r}\,'\sigma'\tau} 1^{\sigma'\sigma}$$
$$s_{\tau,\nu}(\vec{r}, \vec{r}') \equiv \sum_{\sigma\sigma'} \rho_{\vec{r}\sigma\tau\vec{r}\,'\sigma'\tau} \sigma_{\nu}^{\sigma'\sigma}$$

Time-odd local densities

$$s_{\tau,\nu}(\vec{r}) \equiv s_{\tau,\nu}(\vec{r},\vec{r}')|_{\vec{r}=\vec{r}'}$$

 $T_{\tau,\nu}(\vec{r}) \equiv \sum_{\mu} \nabla_{\mu} \nabla'_{\mu} s_{\tau,\nu}(\vec{r},\vec{r}')|_{\vec{r}=\vec{r}'}$ $F_{\tau,\mu}(\vec{r}) \equiv \frac{1}{2} \sum_{\nu} \left(\nabla_{\mu} \nabla'_{\nu} + \nabla_{\nu} \nabla'_{\mu} \right) s_{\tau,\nu}(\vec{r},\vec{r}')|_{\vec{r}=\vec{r}'}$ $j_{\tau,\mu}(\vec{r}) \equiv \frac{i}{2} \left(\nabla'_{\mu} - \nabla_{\mu} \right) \rho_{\tau}(\vec{r},\vec{r}')|_{\vec{r}=\vec{r}'}$

Spin density

Spin-kinetic density

Tensor-kinetic density

Current density

EDF methods

EDF methods

EDF kernel Quasi-local form of $\mathcal{E}_{qq'} = \mathcal{E}[\rho^{qq'}, \kappa^{qq'}, \kappa^{q'q*}]$ Historically: kernel derived from a pseudo-Hamiltonian H^{pseudo} Quasi zero-range two-body pseudo-potential with 9 parameters $V_{\rm skyrme} \equiv V_{\rm cent} + V_{\rm ls} + V_{\rm tens}$ $V_{\text{cent}} = t_0 (1 + x_0 P_{\sigma}) \delta(\vec{r})$ + $\frac{t_1}{2}(1+x_1P_{\sigma})\left[\delta(\vec{r})\overrightarrow{k}^2 + \overleftarrow{k'}^2\delta(\vec{r})\right]$ + $t_2 (1 + x_2 P_{\sigma}) \overleftarrow{k'} \cdot \delta(\vec{r}) \overrightarrow{k}$ $V_{1s} = i W_0 (\vec{\sigma_1} + \vec{\sigma_2}) \overleftarrow{k'} \wedge \delta(\vec{r}) \overrightarrow{k}$ $V_{\text{tens}} = \frac{t_e}{2} \left\{ \left[3\left(\vec{\sigma}_1 \cdot \overleftarrow{k'}\right) \left(\vec{\sigma}_2 \cdot \overleftarrow{k'}\right) - \left(\vec{\sigma}_1 \cdot \vec{\sigma}_2\right) \overleftarrow{k'}^2 \right] \delta(\vec{r}) \right\}$ $+\delta(\vec{r})\left[3(\vec{\sigma}_{1}\cdot\vec{k})(\vec{\sigma}_{2}\cdot\vec{k})-(\vec{\sigma}_{1}\cdot\vec{\sigma}_{2})\vec{k}^{2}\right]$ + $t_o \left\{ 3(\vec{\sigma}_1 \cdot \overleftarrow{k'}) \, \delta(\vec{r}) \, (\vec{\sigma}_2 \cdot \overrightarrow{k}) - (\vec{\sigma}_1 \cdot \vec{\sigma}_2) \, \overleftarrow{k'} \cdot \delta(\vec{r}) \, \overrightarrow{k} \right\}$

EDF kernel Quasi-local form of $\mathcal{E}_{qq'} = \mathcal{E}[\rho^{qq'}, \kappa^{qq'}, \kappa^{q'q*}]$ Historically: kernel derived from a pseudo-Hamiltonian H^{pseudo} Quasi zero-range two-body pseudo-potential with 9 parameters $V_{\rm skyrme} \equiv V_{\rm cent} + V_{\rm ls} + V_{\rm tens}$ $V_{\text{cent}} = t_0 \left(1 + x_0 P_{\sigma}\right) \delta(\vec{r})$ + $\frac{t_1}{2}(1+x_1P_{\sigma})\left[\delta(\vec{r})\ \vec{k}^2 + \vec{k'}^2\,\delta(\vec{r})\right]$ + $t_2 (1 + x_2 P_{\sigma}) \overleftarrow{k'} \cdot \delta(\vec{r}) \overrightarrow{k}$ $V_{1s} = i W_0 (\vec{\sigma_1} + \vec{\sigma_2}) \overleftarrow{k'} \wedge \delta(\vec{r}) \overrightarrow{k}$ $V_{\text{tens}} = \frac{t_e}{2} \left\{ \left[3(\vec{\sigma}_1 \cdot \overleftarrow{k'})(\vec{\sigma}_2 \cdot \overleftarrow{k'}) - (\vec{\sigma}_1 \cdot \vec{\sigma}_2) \overleftarrow{k'}^2 \right] \delta(\vec{r}) \right\}$ $+\delta(\vec{r})\left[3\left(\vec{\sigma}_{1}\cdot\vec{k}\right)\left(\vec{\sigma}_{2}\cdot\vec{k}\right)-\left(\vec{\sigma}_{1}\cdot\vec{\sigma}_{2}\right)\vec{k}^{2}\right]\right\}$ + $t_o \left\{ 3(\vec{\sigma}_1 \cdot \overleftarrow{k'}) \delta(\vec{r}) (\vec{\sigma}_2 \cdot \overrightarrow{k}) - (\vec{\sigma}_1 \cdot \vec{\sigma}_2) \overleftarrow{k'} \cdot \delta(\vec{r}) \overrightarrow{k} \right\}$

 $\mathfrak{S}_{H}[\rho,\kappa,\kappa^{*}] \equiv \langle \Phi | T + V_{\text{skyrme}} | \Phi \rangle \iff \textit{Effective Hartree-Fock}$

$$\begin{aligned} & \text{Phinoduction} & \text{EDF} & \text{EDF kernel} & \text{EDF kernel} \\ & \text{OCCCORCCONCOUNCE} \end{aligned} \\ & \text{Quasi-local form of } \mathcal{E}_{qq'} = \mathcal{E}[\rho^{qq'}, \kappa^{qq'}, \kappa^{q'q*}] \end{aligned} \\ & \text{Historically: kernel derived from a pseudo-Hamiltonian } H^{\text{pseudo}} \\ & \bullet & \langle \Phi | H^{\text{pseudo}}_{\text{skyrme}} | \Phi \rangle = \text{purely bilinear Skyrme-type EDF} \\ & \bullet & \text{Correlations induced among the 18 EDF couplings} = \text{Pauli principle} \\ & \mathcal{E}_{H}[\rho, \kappa, \kappa^{*}] = \sum_{\tau} \int d\vec{\tau} \frac{\hbar^{2}}{2m} \tau_{\tau} \\ & + \sum_{\tau\tau'} \int d\vec{\tau} \left[C^{\rho\rho}_{\tau\tau'} \rho_{\tau} \rho_{\tau\tau'} + C^{\rho\Delta\rho}_{\tau\tau'} \rho_{\tau} \Delta \rho_{\tau'} + C^{\rho\tau}_{\tau\tau'} \left(\rho_{\tau} \tau_{\tau'} - \vec{j}_{\tau} \cdot \vec{j}_{\tau'} \right) \\ & + C^{ss}_{\tau\tau'} \vec{s}_{\tau'} \cdot \vec{s}_{\tau'} + C^{s\Delta s}_{\tau\tau'} \vec{s}_{\tau} \cdot \Delta \vec{s}_{\tau'} + C^{\rho\nabla J}_{\tau\tau'} \left(\rho_{\tau} \vec{\nabla} \cdot \vec{J}_{\tau'} + \vec{j}_{\tau} \cdot \vec{\nabla} \times \vec{s}_{\tau'} \right) \\ & + C^{\nabla s \nabla s}_{\tau\tau'} (\nabla \cdot \vec{s}_{\tau}) (\nabla \cdot \vec{s}_{\tau'}) + C^{JJ}_{\tau\tau'} \left(\sum_{\mu\nu} J_{\tau,\mu\nu} J_{\tau',\mu\nu} - \vec{s}_{\tau} \cdot \vec{T}_{\tau'} \right) \\ & + C^{J\bar{J}}_{\tau\tau'} \left(\sum_{\mu\nu} J_{\tau,\mu\mu} J_{\tau',\nu\nu} + J_{\tau,\mu\nu} J_{\tau',\nu\mu} - 2 \vec{s}_{\tau} \cdot \vec{F}_{\tau'} \right) \end{bmatrix} + \text{terms in} [\kappa, \kappa^{*}] \end{aligned}$$

▶ Not enough (i) powers of the densities and (ii) freedom to fix the $C_{\tau\tau'}^{ff'}$

▶ Not enough (i) powers of the densities and (ii) freedom to fix the $C_{\tau\tau'}^{ff'}$

$$\begin{aligned} & \text{Introduction} & \text{EDF bernel} & \text{EDF bernel} \\ & \text{occccccccc} & \text{Occccccccccc} & \text{Bibliography} \\ & \text{Quasi-local form of } \mathcal{E}_{qq'} = \mathcal{E}[\rho^{qq'}, \kappa^{qq'}, \kappa^{q'q*}] \end{aligned}$$

$$\begin{aligned} & \text{Historically: kernel derived from a pseudo-Hamiltonian } H^{\text{pseudo}} \\ & \bullet \langle \Phi | H^{\text{pseudo}}_{\text{skyrme}} | \Phi \rangle = \text{purely bilinear Skyrme-type EDF} \\ & \bullet \langle \Phi | H^{\text{pseudo}}_{\text{skyrme}} | \Phi \rangle = \text{purely bilinear Skyrme-type EDF} \\ & \bullet \text{Correlations induced among the 18 EDF couplings} = \text{Pauli principle} \\ & \mathcal{E}_{H}[\rho, \kappa, \kappa^{*}] = \sum_{\tau} \int d\vec{r} \frac{\hbar^{2}}{2m} \tau_{\tau} \\ & + \sum_{\tau\tau'} \int d\vec{r} \left[C^{\rho\rho}_{\tau\tau'} \rho_{\tau} \rho_{\tau} \rho_{\tau'} + C^{\rho\Delta\rho}_{\tau\tau'} \rho_{\tau} \Delta \rho_{\tau'} + C^{\rho\tau}_{\tau\tau'} \left(\rho_{\tau} \tau_{\tau'} - \vec{j}_{\tau} \cdot \vec{j}_{\tau'} \right) \\ & + C^{ss}_{\tau\tau'} \vec{s}_{\tau'} \cdot \vec{s}_{\tau'} + C^{s\Delta s}_{\tau\tau'} \vec{s}_{\tau} \cdot \Delta \vec{s}_{\tau'} + C^{\rho\nabla J}_{\tau\tau'} \left(\rho_{\tau} \vec{\nabla} \cdot \vec{J}_{\tau'} + \vec{j}_{\tau} \cdot \vec{\nabla} \times \vec{s}_{\tau'} \right) \\ & + C^{\nabla s}_{\tau\tau'} \vec{s}_{\tau} (\nabla \cdot \vec{s}_{\tau}) (\nabla \cdot \vec{s}_{\tau'}) + C^{JJ}_{\tau\tau'} \left(\sum_{\mu\nu} J_{\tau,\mu\nu} J_{\tau',\nu\nu} - 2 \vec{s}_{\tau} \cdot \vec{F}_{\tau'} \right) \right] + \text{terms in} [\kappa, \kappa^{*}] \end{aligned}$$

• Not enough (i) powers of the densities and (ii) freedom to fix the $C_{\tau\tau'}^{ff'}$

EDF kernel 000000 Quasi-local form of $\mathcal{E}_{qq'} = \mathcal{E}[\rho^{qq'}, \kappa^{qq'}, \kappa^{q'q*}]$ Historically: kernel derived from a *density-dependent* effective pseudo-potential • Step towards EDF philosophy by adding a density dependence to " $V_{\rm skyrme}$ " " V_{cent} " = $t_0 (1 + x_0 P_\sigma) \delta(\vec{r})$ + $\frac{1}{2} t_1 (1 + x_1 P_{\sigma}) \left[\delta(\vec{r}) \overrightarrow{k}^2 + \overleftarrow{k'}^2 \delta(\vec{r}) \right]$ + $t_2 (1 + x_2 P_{\sigma}) \overleftarrow{k'} \cdot \delta(\vec{r}) \overrightarrow{k}$ + $\frac{1}{6} t_3 (1 + x_3 P_{\sigma}) \rho_0^{\alpha}(\vec{r}) \delta(\vec{r})$ **2** Compute $\mathcal{E}_{"H"}[\rho,\kappa,\kappa^*] \equiv \langle \Phi | T + "V_{\text{skyrme}}" | \Phi \rangle$

• Only $C^{\rho\rho}_{\tau\tau'}$ further depend on \vec{r} via $\rho^{\alpha}_0(\vec{r})$

Modern EDF approach = exploit full freedom offered by EDF kernel

Bypass " V_{skyrme} " entirely to parameterize $\mathcal{E}[\rho, \kappa, \kappa^*]$ directly

Freedom to use any functional form; e.g. Padé, exponential...

Relax constraints between EDF couplings

Is that free from any difficulty?

EDF kernel 000000 Quasi-local form of $\mathcal{E}_{qq'} = \mathcal{E}[\rho^{qq'}, \kappa^{qq'}, \kappa^{q'q*}]$ Historically: kernel derived from a *density-dependent* effective pseudo-potential • Step towards EDF philosophy by adding a density dependence to " $V_{\rm skyrme}$ " " V_{cent} " = $t_0 (1 + x_0 P_\sigma) \delta(\vec{r})$ + $\frac{1}{2} t_1 (1 + x_1 P_{\sigma}) \left[\delta(\vec{r}) \overrightarrow{k}^2 + \overleftarrow{k'}^2 \delta(\vec{r}) \right]$ + $t_2 (1 + x_2 P_{\sigma}) \overleftarrow{k'} \cdot \delta(\vec{r}) \overrightarrow{k}$ + $\frac{1}{6} t_3 (1 + x_3 P_{\sigma}) \rho_0^{\alpha}(\vec{r}) \delta(\vec{r})$ **2** Compute $\mathcal{E}_{"H"}[\rho,\kappa,\kappa^*] \equiv \langle \Phi | T + "V_{\text{skvrme}}" | \Phi \rangle$

▶ Only $C_{\pi\pi'}^{\rho\rho}$, further depend on \vec{r} via $\rho_0^{\alpha}(\vec{r})$

• Modern EDF approach = exploit full freedom offered by EDF kernel

- Bypass " V_{skyrme} " entirely to parameterize $\mathcal{E}[\rho, \kappa, \kappa^*]$ directly
- Freedom to use any functional form; e.g. Padé, exponential...
- Relax constraints between EDF couplings
- ➡ Is that free from any difficulty?

		MR-EDF 0000000000000	
Outline			

2 Single-reference implementation

- Inputs
- Equation of motion
- Breaking symmetries
- Typical applications

8 Empirical parametrization of the EDF kernel

- General strategy
- Skyrme family

Multi-reference implementation

- Limitations of the single-reference implementation
- Restoring symmetries
- Unexpected pathologies
- Typical applications

	MR-EDF	
	• 00 000000000	

Outline

Introduction

Single-reference implementation

- Inputs
- Equation of motion
- Breaking symmetries
- Typical applications

3 Empirical parametrization of the EDF kernel

- General strategy
- Skyrme family

Multi-reference implementation

- Limitations of the single-reference implementation
- Restoring symmetries
- Unexpected pathologies
- Typical applications

How to improve on that consistently?

- **Go beyond** $|\Phi_q\rangle$ at fixed q
- ▶ Mixing in |q| and $\operatorname{Arg}(q)$
- Add dynamical correlations
- Provide excitations

Bibliography

Multi-reference implementation in a nutshell

Second level of implementation

 \blacksquare Mixes off-diagonal energy kernels associated with MR set $\{|\Phi_q\rangle\}$

$$E_k^{\mathrm{MR}} \equiv \operatorname{Min}_{\{f_q^k\}} \frac{\sum_{q,q' \in \mathrm{MR}} f_q^{k*} f_{q'}^k \, \mathcal{E}_{qq'} \, \left\langle \Phi_q | \Phi_{q'} \right\rangle}{\sum_{q,q' \in \mathrm{MR}} f_q^{k*} f_{q'}^k \left\langle \Phi_q | \Phi_{q'} \right\rangle}$$

- Treats collective vibrations = mixing along |q|
 {f^k_q} obtained via minimization
- ▶ Restores broken symmetries = mixing along φ_q
 - ▶ $\{f_q^k\}$ fixed by symmetry-group structure
- Large-amplitude quantum fluctuations
 - Includes G.S. correlations
 - **2** Provides associated collective excitations
- Common approximation schemes
 - QRPA = harmonic fluctuations
 Bohr-Hamiltonian = GOA

Bibliography

Multi-reference implementation in a nutshell

Second level of implementation

 \blacksquare Mixes off-diagonal energy kernels associated with MR set $\{|\Phi_q\rangle\}$

$$E_k^{\mathrm{MR}} \equiv \operatorname{Min}_{\{f_q^k\}} \frac{\sum_{q,q' \in \mathrm{MR}} f_q^{k*} f_{q'}^k \mathcal{E}_{qq'} \langle \Phi_q | \Phi_{q'} \rangle}{\sum_{q,q' \in \mathrm{MR}} f_q^{k*} f_{q'}^k \langle \Phi_q | \Phi_{q'} \rangle}$$

- Treats collective vibrations = mixing along |q|
 {f_q^k} obtained via minimization
- Restores broken symmetries = mixing along φ_q
 - ▶ $\{f_q^k\}$ fixed by symmetry-group structure
- Large-amplitude quantum fluctuations
 - Includes G.S. correlations
 - Provides associated collective excitations
- Common approximation schemes
 - QRPA = harmonic fluctuations
 Bohr-Hamiltonian = GOA

Bibliography

Multi-reference implementation in a nutshell

Second level of implementation

 \blacksquare Mixes off-diagonal energy kernels associated with MR set $\{|\Phi_q\rangle\}$

$$E_k^{\mathrm{MR}} \equiv \mathrm{Min}_{\{f_q^k\}} \frac{\sum_{q,q' \in \mathrm{MR}} f_q^{k*} f_q^{k'} \mathcal{E}_{qq'} \left\langle \Phi_q | \Phi_{q'} \right\rangle}{\sum_{q,q' \in \mathrm{MR}} f_q^{k*} f_{q'}^k \left\langle \Phi_q | \Phi_{q'} \right\rangle}$$

- Treats collective vibrations = mixing along |q|
 {f^k_q} obtained via minimization
- ▶ Restores broken symmetries = mixing along φ_q
 - ▶ $\{f_q^k\}$ fixed by symmetry-group structure
- Large-amplitude quantum fluctuations
 - Includes G.S. correlations
 - Provides associated collective excitations
- Common approximation schemes
 - QRPA = harmonic fluctuations
 Bohr-Hamiltonian = GOA

		MR-EDF 000 000 0000000	
Outline			

Single-reference implementation

- Inputs
- Equation of motion
- Breaking symmetries
- Typical applications

3 Empirical parametrization of the EDF kernel

- General strategy
- Skyrme family

Multi-reference implementation

- Limitations of the single-reference implementation
- Restoring symmetries
- Unexpected pathologies
- Typical applications

Symmetry group \mathcal{G} of H

Symmetry group $\mathcal{G} = \{\mathcal{R}(g)\}$

- Continuous, non-abelian, compact, Lie group
 - \blacktriangleright Parameterized by $g \equiv \{g_i \in D_i\,;\, i=1,\ldots,r\} \equiv \mathrm{Arg}(q)$
 - ▶ Invariant measure dm(g) and volume $v_{\mathcal{G}} \equiv \int_{\mathcal{G}} dm(g)$
 - Infinitesimal generators $C = \{C_i; i = 1, ..., r\}$ and Casimir A

② Represented on Fock space by R(g) with Irreps of dimension d_{λ}

 $S^{\lambda}_{ab}(g) \equiv \langle \Theta^{\lambda a} | \, R(g) \, | \Theta^{\lambda b} \rangle \quad \text{ where } (a,b) \, \text{run over} \, d^2_{\lambda} \, \text{values}$

O Unitarity of Irreps and combination of transformations

$$\sum_{c} S_{ca}^{\lambda*}(g') S_{cb}^{\lambda}(g) = \sum_{c} S_{ac}^{\lambda}(-g') S_{cb}^{\lambda}(g) = S_{ab}^{\lambda}(g-g')$$

③ Decomposition of function f(g) over volume of \mathcal{G}

$$f(g) \equiv \sum_{\lambda ab} f_{ab}^{\lambda} S_{ab}^{\lambda}(g)$$
EDF kernel 00000000 MR-EDF

Bibliography

Symmetry group \mathcal{G} of H

Ex1: Space rotation $SO(3) = \{\mathcal{R}(\Omega)\}$

- O Continuous, non-abelian, compact, Lie group
 - ▶ Parameterized by three Euler angles $\Omega = (\alpha, \beta, \gamma) \in ([0, 2\pi], [0, \pi], [0, 2\pi])$
 - ▶ Invariant measure $d\Omega = \sin\beta d\alpha d\beta d\gamma$ and volume $v_{SO(3)} \equiv 16\pi^2$
 - \blacktriangleright Infinitesimal generators \vec{J} and Casimir J^2
- **②** On Fock space $R(\Omega) = e^{-i\alpha J_z} e^{-i\beta J_y} e^{-i\gamma J_z}$ with Irreps of $d_J = 2J + 1$

 $\langle JM | R(\Omega) | J'M' \rangle \equiv \mathcal{D}^J_{MM'}(\Omega) \, \delta_{JJ'} \text{ with } 2J \in \mathbb{N} ; -2J \leq 2(M,M') \leq +2J \in \mathbb{Z}$

③ Unitarity of Irreps and combination of transformations

$$\sum_{M^{\prime\prime}} \mathcal{D}_{M^{\prime\prime}M}^{J*}(\Omega^{\prime}) \mathcal{D}_{M^{\prime\prime}M^{\prime}}^{J}(\Omega) = \sum_{M^{\prime\prime}} \mathcal{D}_{MM^{\prime\prime}}^{J}(-\Omega^{\prime}) \mathcal{D}_{M^{\prime\prime}M^{\prime}}^{J}(\Omega) = \mathcal{D}_{MM^{\prime}}^{J}(\Omega-\Omega^{\prime})$$

Q Decomposition of function $f(\Omega)$ over volume of SO(3)

$$f(\Omega) \equiv \sum_{JMM'} f^J_{MM'} \, \mathcal{D}^J_{MM'}(\Omega)$$

EDF kernel 00000000 MR-EDF 00000000000

Symmetry group \mathcal{G} of H

Ex2: Gauge rotation $U(1) = \{\mathcal{R}(\varphi)\}$

• Continuous, abelian, compact, Lie group

- ▶ Parameterized by a gauge angle $\varphi \in [0, 2\pi]$
- Invariant measure $d\varphi$ and volume $v_{U(1)} \equiv 2\pi$
- ▶ Infinitesimal generator N and Casimir N^2
- On Fock space $R(\varphi) = e^{i\varphi N}$ with Irreps of $d_N = 1$

 $\langle N | R(\varphi) | N' \rangle \equiv R_N(\varphi) \, \delta_{NN'} = e^{iN\varphi} \, \delta_{NN'} \text{ with } N \in \mathbb{Z}$

Output of Irreps and combination of transformations

$$[e^{i\varphi'N}]^* e^{i\varphi N} = e^{i(-\varphi')N} e^{i\varphi N} = e^{i(\varphi-\varphi')N}$$

Q Decomposition, i.e. Fourier expansion, of function $f(\varphi)$ over volume of U(1)

$$f(\varphi) \equiv \sum_{N \in \mathbb{Z}} f^N \ e^{i\varphi N}$$

EDF methods

EDF kernel

MR-EDF 000000000000 Bibliography

Symmetry restored MR-EDF energy

Е

Symmetry-restored energies E_{λ}^{MR}

• Single-reference state $|\Phi_0\rangle \equiv \sum_{\lambda a} c_{\lambda a} |\Theta^{\lambda a}\rangle$ with $|\Theta^{\lambda a}\rangle \in \text{Irrep }\lambda$

 $\bigcirc \text{ MR set } \{ |\Phi_g\rangle \equiv R(g) \, |\Phi_0\rangle \} \text{ and energy kernel } \mathcal{E}_{g'g} \equiv \mathcal{E}[\langle \Phi_{g'} |; |\Phi_g\rangle]$

③ Decomposition of kernels over Irreps of \mathcal{G}

$$\begin{split} [\langle \Phi_{g'} | ; | \Phi_{g} \rangle] \langle \Phi_{g'} | \Phi_{g} \rangle &\equiv \sum_{\lambda ab} E^{\lambda}_{ab} S^{\lambda}_{ab}(g-g') \\ \langle \Phi_{g'} | \Phi_{g} \rangle &= \sum_{\lambda ab} c^{*}_{\lambda a} c_{\lambda b} S^{\lambda}_{ab}(g-g') \end{split}$$

whose coefficients, e.g. E_{ab}^{λ} , can be extracted through

$$E_{ab}^{\lambda} = \left(\frac{d_{\lambda}}{v_{\mathcal{G}}}\right)^2 \int \int_{\mathcal{G}} dm(g') \, dm(g) \, S_{ca}^{\lambda}(g') \, S_{cb}^{\lambda*}(g) \, \mathcal{E}[\langle \Phi_{g'} |; |\Phi_g \rangle] \, \langle \Phi_{g'} | \Phi_g \rangle$$

• Real and scalar symmetry-restored MR energy defined through

$$E_{\lambda}^{\mathrm{MR}} \equiv E_{ab}^{\lambda}/c_{\lambda a}^{*} c_{\lambda b}$$

EDF kernel 00000000 MR-EDF 000**000**00000 Bibliography

Symmetry restored MR-EDF energy

Pseudo-potential-based EDF method

• Non-diagonal kernel $\mathcal{E}_H[\langle \Phi_{g'} | ; | \Phi_g \rangle] \equiv \langle \Phi_{g'} | H^{\text{pseudo}} | \Phi_g \rangle = \mathcal{E}_H[\rho^{g'g}, \kappa^{g'g}, \kappa^{gg'*}]$

▶ In general $\mathcal{E}[\langle \Phi_{g'} | ; | \Phi_g \rangle]$ CANNOT be factorized as $\langle \Phi_{g'} | H^{\text{pseudo}} | \Phi_g \rangle$

Transfer operator

$$P_{ab}^{\lambda} \equiv \frac{d_{\lambda}}{v_{\mathcal{G}}} \int_{\mathcal{G}} \frac{dm(g)}{c_{\lambda b}} S_{ab}^{\lambda*}(g) R(g) \quad \text{such that} \quad |\Theta^{\lambda a}\rangle = P_{ab}^{\lambda} |\Phi_0\rangle$$

Decomposition of the energy kernel becomes

$$\mathcal{E}_{H}[\langle \Phi_{g'} | ; |\Phi_{g}\rangle] \langle \Phi_{g'} | \Phi_{g}\rangle = \sum_{\lambda ab} c^{*}_{\lambda a} c_{\lambda b} E^{\lambda} S^{\lambda}_{ab}(g-g')$$

Symmetry-restored MR energy reads

$$E_{\lambda}^{\mathrm{MR}} \equiv \frac{E_{ab}^{\lambda}}{c_{\lambda a}^{\star} c_{\lambda b}} = E^{\lambda} = \langle \Theta^{\lambda a} | H^{\mathrm{pseudo}} | \Theta^{\lambda a} \rangle$$

▶ In general E_{λ}^{MR} CANNOT be factorized in terms of $|\Theta^{\lambda a}\rangle$

EDF kernel 00000000 MR-EDF 000**000**00000 Bibliography

Symmetry restored MR-EDF energy

Pseudo-potential-based EDF method

• Non-diagonal kernel $\mathcal{E}_H[\langle \Phi_{g'} | ; | \Phi_g \rangle] \equiv \langle \Phi_{g'} | H^{\text{pseudo}} | \Phi_g \rangle = \mathcal{E}_H[\rho^{g'g}, \kappa^{g'g}, \kappa^{gg'*}]$

▶ In general $\mathcal{E}[\langle \Phi_{g'} | ; | \Phi_g \rangle]$ CANNOT be factorized as $\langle \Phi_{g'} | H^{\text{pseudo}} | \Phi_g \rangle$

Transfer operator

$$P_{ab}^{\lambda} \equiv \frac{d_{\lambda}}{v_{G}} \int_{C} \frac{dm(g)}{c_{\lambda b}} S_{ab}^{\lambda*}(g) R(g) \quad \text{such that} \quad |\Theta^{\lambda a}\rangle = P_{ab}^{\lambda} |\Phi_0\rangle$$

Is that difference with the general case of any importance?

$$\mathcal{E}_{H}[\langle \Phi_{g'} | ; |\Phi_{g}\rangle] \langle \Phi_{g'} | \Phi_{g}\rangle = \sum_{\lambda ab} c^{-}_{\lambda a} c_{\lambda b} E^{-} S^{-}_{ab}(g-g')$$

Symmetry-restored MR energy reads

$$E_{\lambda}^{\mathrm{MR}} \equiv \frac{E_{ab}^{\lambda}}{c_{\lambda a}^{*} c_{\lambda b}} = E^{\lambda} = \langle \Theta^{\lambda a} | H^{\mathrm{pseudo}} | \Theta^{\lambda a} \rangle$$

▶ In general E_{λ}^{MR} CANNOT be factorized in terms of $|\Theta^{\lambda a}\rangle$

Outline

Introduction

2 Single-reference implementation

- Inputs
- Equation of motion
- Breaking symmetries
- Typical applications

3 Empirical parametrization of the EDF kernel

- General strategy
- Skyrme family

4 Multi-reference implementation

- Limitations of the single-reference implementation
- Restoring symmetries

• Unexpected pathologies

• Typical applications

Bibliography

EDF kernel

MR-EDF 0000000000000 Bibliography

Consistency requirements on the EDF kernel

Key question

What are the authorized analytical forms of $\mathcal{E}_{q'q}$?

Inspiration: pseudo-potential-based EDF kernel

From Generalized Wick Theorem $\mathcal{E}_{q'q} \equiv \langle \Phi_{q'} | H^{\text{pseudo}} | \Phi_{q} \rangle = \mathcal{E}_{H}[\rho^{q'q}, \kappa^{q'q}, \kappa^{qq'*}]$

Set of consistency requirements [L. Robledo, IJMP E16 (2007) 337; JPG 37 (2010) 064020]

- $\mathcal{E}_{\lambda}^{\mathrm{MR}}$ must be real and a scalar under all transformations of \mathcal{G}
- **②** Consistency of MR and SR schemes

• $\mathcal{E}_{\lambda}^{MR} = \mathcal{E}^{SR}$ when the MR set $\{|\Phi_q\rangle\}$ reduces to a single state $|\Phi_q\rangle$

- ${\it @}$ Chemical potential λ must be recovered from Kamlah expansion of ${\cal E}_N^{
 m MR}$
- QRPA must be recovered through harmonic limit of $\mathcal{E}_{\lambda}^{\mathrm{MR}}$

Conclusion: kernel must involve $\langle \Phi_{q'} |$ and $| \Phi_{q} \rangle$ only

 $f Diagonal \ {f SR} \ {f kernel} \ {\cal E}[
ho^{{f qq}}, \kappa^{{f qq}}, \kappa^{{f qq}*}]$

GWT-inspired connection s it always a viable option?

EDF methods

EDF kernel

MR-EDF 000000000000000

Unexpected pathologies

Divergencies and finite steps [J. Dobaczewski *et al.*, PRC76 (2007) 054315]
Non-analyticity of \$\mathcal{E}[\rho^{0\varphi}, \kappa^{0\varphi}]\$ over \$\mathcal{C}^*\$-plane with \$e^{i\varphi} \equiv z\$

• $\mathcal{E}_N^{MR} \neq 0$ for $N \leq 0!!$ [M. Bender, T.D., D. Lacroix, PRC79 (2009) 044319]

• Similar problems for other MR modes, e.g. angular momentum restoration

EDF kernel

MR-EDF

Bibliography

Unexpected pathologies

EDF methods

			MR-EDF ○○○○○○○○○○○○○			
What to do about that?						

Related topics covered during the workshop

- Design a regularization method $\mathcal{E}_{q'q}^{\text{REG}} \equiv \mathcal{E}[\rho^{q'q}, \kappa^{q'q}, \kappa^{qq'*}] \mathcal{E}_C[\langle \Phi_{q'} |; |\Phi_q \rangle]$ [D. Lacroix, M. Bender, L. Robledo]
- $\textbf{\Theta} \text{ Build a pseudo-potential-based kernel } \mathcal{E}_{q'q}^{H} \equiv \langle \Phi_{g'} | H_{\text{Skyrme}}^{\text{pseudo}} | \Phi_{g} \rangle$ [J. Sadoudi]
- Use spuriosity-free approximations to \$\mathcal{E}_{q'q}\$
 [J. Libert, D. Vretenar, P.-G. Reinhard, N. Hinohara]
- Bypass the MR-EDF step altogether
 - [J. Messud, J. Dobaczewski, G. Hupin]

Outline

Introduction

2 Single-reference implementation

- Inputs
- Equation of motion
- Breaking symmetries
- Typical applications

3 Empirical parametrization of the EDF kernel

- General strategy
- Skyrme family

4 Multi-reference implementation

- Limitations of the single-reference implementation
- Restoring symmetries
- Unexpected pathologies
- Typical applications

Bibliography

Introduction

SR-EDF

EDF kernel 00000000 MR-EDF 000000000000000 Bibliography

Typical results from MR-EDF calculations

Systematic of quadrupole correlations

EDF kernel

MR-EDF 000000000000000 Bibliography

Typical results from MR-EDF calculations

Z = 50 magic gaps in Sn isotopes

From difference of -S_{2p}(Z) = E₀^Z - E₀^{Z+2}
Importance of correlations to reproduce data
Current focus on evolution with N-Z
[M. Bender, G. F. Bertsch, P.-H. Heenen, PRC78 (2008) 054312]

EDF kernel

MR-EDF 000000000000000 Bibliography

Typical results from MR-EDF calculations

Systematic of S_{2q} and magic gaps

8 Radii

Resonances

- Spectroscopy
- In Fission

- Visible (e.g. N = 50) shell quenching
- Collective correlations are essential
- Shell effects too pronounced in heavy nuclei

[M. Bender, G. F. Bertsch, P.-H. Heenen, PRC78 (2008) 054312]

EDF kernel

MR-EDF 000000000000000 Bibliography

Typical results from MR-EDF calculations

Calculations

Binding

- Shells
- 8 Radii
- Resonances
- Spectroscopy
- In Fission

- Good reproduction of data
- \blacksquare Correct $N\!-\!Z$ dependence
- Importance of correlations

[M. Bender, G. F. Bertsch, P.-H. Heenen, PRC73 (2006) 034322]

EDF kernel

MR-EDF 00000000000000 Bibliography

Typical results from MR-EDF calculations

Systematic of charge radii

- Good agreement ($\leq 3\%$)
- More difficult to extract r_n^2 experimentally
- Neutron skin $\sqrt{r_n^2} \sqrt{r_p^2}$ of importance
- \blacksquare New interest triggered by JLAB exp. on $^{208}\mathrm{Pb}$
- [J. P. Delaroche et al., unpublished]

Calculations

Shells

Radii

In Fission

Resonances

Binding

00000000000000

Typical results from MR-EDF calculations

- \blacksquare QRPA = harmonic approximation of MR-EDF
- Strength distribution

$$S_{\lambda}(E) = \sum_{i} \left| \langle \Psi_{0}^{A} | F_{\lambda} | \Psi_{i}^{A} \rangle \right|^{2} \delta(E_{i}^{A} - E_{0}^{A})$$

Resonances for all $\lambda = L^{\pi}$ and T = 0, 1 with $L \leq 3$

- **Test features of EDF** $(K_{\infty}, m_{\tau}^*, a_{\text{sym}}, \text{ pairing...})$
- [J. Engel, unpublished]

EDF kernel

MR-EDF

Bibliography

Typical results from MR-EDF calculations

Low-lying collective spectroscopy of ¹⁸⁶Pb

- Complex nucleus displaying shape coexistence
- Good overall picture: bands, in/out B(E2)s
- \blacksquare Too spread out spectra and too large E0
- Extensions needed

[M. Bender et al., PRC69 (2004) 064303]

EDF kernel

MR-EDF 00000000000000 Bibliography

Typical results from MR-EDF calculations

- 8 Radii
- Resonances
- Spectroscopy
- In Fission

- **\blacksquare** Fission fragments properties: A, E_{kin} distrib.
- \blacksquare SR-EDF \Rightarrow static paths for a symmetric fission
- Bohr Hamiltonian \Rightarrow fission dynamics
- Need exp. Z distrib., $T_{1/2}$, n/γ with N-Z

[H. Goutte et al., PRC71 (2005) 024316]

Outline		

Introduction

2 Single-reference implementation

- Inputs
- Equation of motion
- Breaking symmetries
- Typical applications

8 Empirical parametrization of the EDF kernel

- General strategy
- Skyrme family

Multi-reference implementation

- Limitations of the single-reference implementation
- Restoring symmetries
- Unexpected pathologies
- Typical applications

Bibliography

SR-EDF numerical codes

Some published SR-EDF (Skyrme) codes

• 1D code with spherical symmetry HFBRAD

[K. Bennaceur, J. Dobaczewski, Comp. Phys. Comm. 168 (2005) 96] http://www.sciencedirect.com/science/article/pii/S0010465505002304

2 D code with axial symmetry HFBTHO

[M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Comp. Phys. Comm. 167 (2005) 43] http://www.sciencedirect.com/science/article/pii/S0010465505000305

3D code with 3 symmetry planes ev8

[P. Bonche, H. Flocard, P.-H. Heenen, Comp. Phys. Comm. 171 (2005) 49] http://www.sciencedirect.com/science/article/pii/S0010465505002821

3D code with no symmetry HFODD

[J. Dobaczewski et al., Comp. Phys. Comm. 180 (2009) 2361]

http://www.sciencedirect.com/science/article/pii/S0010465509002598

Selected bibliography						
 P. Ring, P. The nuclea M. Bender Rev. Mod. 	Schuck, er many-body problem, , PH. Heenen, PG. 1 Phys. 75 (2003) 121	1980, Springer-V Reinhard,	erlag, Berlin			
T. Duguet, Opportunit	K. Bennaceur, T. Lesties with Exotic Beams	sinski, J. Meyer, s, 2007, World Sci	ientific, p. 21			
K. Bennac	eur, J. Dobaczewski,					

Comp. Phys. Comm. 168 (2005) 96

M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Comp. Phys. Comm. 167 (2005) 43

P. Bonche, H. Flocard, P.-H. Heenen, Comp. Phys. Comm. 171 (2005) 49

J. Dobaczewski et al.,

Comp. Phys. Comm. 180 (2009) 2361