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Introduction

The equation

We aim to study the following NLS equation :

NLS with random dispersion


∂u
∂t

(t, x) = i
◦

W(t)
∂2u
∂x2 (t, x) + g(u(t, x)) ∀(t, x) ∈ (0, 1]× R

u(t = 0, x) = u0(x)

where
u is unknown and u0 is the initial condition,
g is a nonlinear function,
◦

W is a white noise (i.e. the ”derivative” of a Brownian motion W) :
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Introduction

The white noise
◦

W

NLS with random dispersion


∂u
∂t

(t, x) = i
◦

W(t)
∂2u
∂x2 (t, x) + g(u(t, x)) ∀(t, x) ∈ (0, 1]× R

u(t = 0, x) = u0(x)

Roughly speaking,
◦

W can be seen as a stationary Gaussian process
satisfying for every t, s ∈ [0, 1],

E(
◦

W (t)) = 0 & E(
◦

W (s)
◦

W (t)) = δ(t − s).

It corresponds to the normalized independent infinitesimal increments of a
Brownian motion W, which is a Gaussian process satisfying for every
t, s ∈ [0, 1],

E(W(t)) = 0 & E(W(s)W(t)) = min(t, s).
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Introduction

Sample path of the white noise
◦

W

FIGURE: Blue : W ; Red :
◦

W.
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Introduction

Origin : nonlinear optic

NLS with random dispersion
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Propagation in optical fiber


∂u
∂z

(z, τ) = i
◦

W(z)
∂2u
∂τ 2 (z, τ) + g(u(z, τ)) ∀(z, τ) ∈ (0, 1]× R

u(z = 0, τ) = u0(τ)

Renaud Marty (IECN, University Nancy 1) Time-splitting for random NLS December 7th, 2011 7 / 25



Introduction

Origin : nonlinear optic

NLS with random dispersion


∂u
∂t

(t, x) = i
◦

W(t)
∂2u
∂x2 (t, x) + g(u(t, x)) ∀(t, x) ∈ (0, 1]× R

u(t = 0, x) = u0(x)

Propagation in optical fiber


∂u
∂z

(z, τ) = i
◦

W(z)
∂2u
∂τ 2 (z, τ) + g(u(z, τ)) ∀(z, τ) ∈ (0, 1]× R

u(z = 0, τ) = u0(τ)

Renaud Marty (IECN, University Nancy 1) Time-splitting for random NLS December 7th, 2011 7 / 25



Introduction

Origin : nonlinear optic

Propagation in optical fiber


∂u
∂z

(z, τ) = i
◦

W(z)
∂2u
∂τ 2 (z, τ) + g(u(z, τ)) ∀(z, τ) ∈ (0, 1]× R

u(z = 0, τ) = u0(τ)

z is the position on the fiber, τ is the time,
u(z, τ) represents the electric field on the position z on the fiber,
◦

W is the white noise dispersion.

G. P. Agrawal
Nonlinear fiber optics.
3rd ed.. Academic Press, San Diego, 2001.
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Introduction

Our questions

NLS with random dispersion


∂u
∂t

(t, x) = i
◦

W(t)
∂2u
∂x2 (t, x) + g(u(t, x)) ∀(t, x) ∈ (0, 1]× R

u(t = 0, x) = u0(x)

Existence and uniqueness of solution.
Time-splitting scheme for simulations.

Renaud Marty (IECN, University Nancy 1) Time-splitting for random NLS December 7th, 2011 9 / 25



Introduction

Our questions

NLS with random dispersion


∂u
∂t

(t, x) = i
◦

W(t)
∂2u
∂x2 (t, x) + g(u(t, x)) ∀(t, x) ∈ (0, 1]× R

u(t = 0, x) = u0(x)

Existence and uniqueness of solution.
Time-splitting scheme for simulations.

Renaud Marty (IECN, University Nancy 1) Time-splitting for random NLS December 7th, 2011 9 / 25



Introduction

Our questions

NLS with random dispersion


∂u
∂t

(t, x) = i
◦

W(t)
∂2u
∂x2 (t, x) + g(u(t, x)) ∀(t, x) ∈ (0, 1]× R

u(t = 0, x) = u0(x)

Existence and uniqueness of solution.
Time-splitting scheme for simulations.

Renaud Marty (IECN, University Nancy 1) Time-splitting for random NLS December 7th, 2011 9 / 25



The nonlinear Schrödinger equation with random dispersion

Contents

1 Introduction

2 The nonlinear Schrödinger equation with random dispersion

3 Time-splitting scheme for NLS with random dispersion
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The nonlinear Schrödinger equation with random dispersion

The linear equation

The linear equation


∂v
∂t

(t, x) = i
◦

W(t)
∂2v
∂x2 (t, x) ∀(t, x) ∈ (0, 1]× R

v(t = t0, x) = v0(x)

is solved by following the procedure :

v0(x)
FT−→ v̂0(ξ)

we solve the Fourier linear equation
∂v̂
∂t

(t, ξ) = −i
◦

W(t)ξ2v̂(t, ξ), which

gives v̂(t, ξ) = v̂0(ξ) exp(−iξ2(W(t)−W(t0))) (Itô-Stratonovich calculus)

v̂(t, ξ) IFT−→ v(t, x)

We define X by
X(t0, t)v0(x) = v(t, x).
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The nonlinear Schrödinger equation with random dispersion

The nonlinear equation

NLS with random dispersion


∂u
∂t

(t, x) = i
◦

W(t)
∂2u
∂x2 (t, x) + g(u(t, x)) ∀(t, x) ∈ (0, 1]× R

u(t = 0, x) = u0(x)

is written in the integral form :

NLS with random dispersion in integral form

u(t, x) = X(0, t)u0(x) +
∫ t

0
X(θ, t)g(u(θ, x))dθ ∀(t, x) ∈ (0, 1]× R
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The nonlinear Schrödinger equation with random dispersion

Existence and uniqueness

Theorem

Let u0 ∈ L2
x . We assume that g is Lipschitz. Then, there exists a unique

solution u ∈ C([0, 1],L2
x) a. s. Moreover, if u0 ∈ H2

x , g two times differentiable
and its derivatives up the order 2 are bounded, then u ∈ C([0, 1],H2

x ) a. e.

The proof consists of a fixed point procedure on the integral form

NLS with random dispersion in integral form

u(t, x) = X(0, t)u0(x) +
∫ t

0
X(θ, t)g(u(θ, x))dθ ∀(t, x) ∈ (0, 1]× R

R. Marty,
On a splitting scheme for the nonlinear Schrödinger equation in a random
medium,
Commun. Math. Sci. Volume 4, Number 4 (2006), 679-705.
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The nonlinear Schrödinger equation with random dispersion

Extensions

For a cubic nonlinearity g(u) = i|u|2u

A. De Bouard and A. Debussche,
The nonlinear Schrödinger equation with white noise dispersion,
Journal of Functional Analysis, 259, pp. 1300-1321 (2010)

For a quintic nonlinearity g(u) = i|u|4u

A. Debussche and Y. Tsustumi,
1D quintic nonlinear Schrödinger equation with white noise dispersion,
Journal de Mathématiques Pures et Appliquées, 96, pp. 363-376 (2011)
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Time-splitting scheme for NLS with random dispersion

Contents

1 Introduction

2 The nonlinear Schrödinger equation with random dispersion

3 Time-splitting scheme for NLS with random dispersion

Renaud Marty (IECN, University Nancy 1) Time-splitting for random NLS December 7th, 2011 15 / 25



Time-splitting scheme for NLS with random dispersion

Notation

We introduce three operators :
S such that v(t, x) = S(t0, t)v0(x) solves

∂v
∂t

= i
◦

W
∂2v
∂x2 + g(v) and v(t = t0, x) = v0(x)

X such that v(t, x) = X(t0, t)v0(x) solves

∂v
∂t

= i
◦

W
∂2v
∂x2 and v(t = t0, x) = v0(x)

Y such that v(t, x) = Y(t − t0)v0(x) solves

∂v
∂t
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Time-splitting scheme for NLS with random dispersion

The scheme : definition and convergence

We subdivise [0, 1] into N intervals of lenght h = 1/N and we aim to construct
{uh

n}n∈{0,1,··· ,N} such that {uh
n}n∈{0,1,··· ,N} ≈h→0 {u(nh, ·)}n∈{0,1,··· ,N}. We let :

initial condition :
uh

0 := u0,

for every n ∈ {1, · · · ,N} : uh
n(t) is defined by

uh
n = Y(h)X((n− 1)h, nh)uh

n−1.

Theorem (M. (2006))

Let u0 ∈ H2(R,C) and assume that g is sufficiently regular. Then there exists C
such that for every h ∈]0, 1] and n satisfying nh ≤ 1, we have√

E
[
||uh

n − u(nh, ·)||2L2(R,C)

]
=: ||uh

n − u(nh, ·)||L2(Ω,L2(R,C)) ≤ C
√

h.
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Time-splitting scheme for NLS with random dispersion

Ideas of the proof

We define the local error between t0 and t starting from an initial condition v0
by :

L[t0, t, v0] := ||S(t0, t)v0 − Y(t − t0)X(t0, t)v0||L2(Ω,L2(R,C)).

Estimate for the local error :

L[t0, t, v0] ≤ C(‖v0‖H2)E
(∣∣∣ ∫ t

t0
(W(t)−W(θ))dθ

∣∣∣),
≤ C(‖v0‖H2)(t − t0)3/2.

Estimate on the global error : we have

||uh
n − u(nh, ·)||L2(Ω,L2(R,C)) ≤ C

n∑
j=1

L[(j− 1)h, jh, u((j− 1)h, ·)]

≤ C
n∑

j=1

h3/2 = Cnh3/2 ≤ C
√

h. �
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Time-splitting scheme for NLS with random dispersion

Simulations

The order of convergence is bounded below by 1/2.
We aim to illustrate the previous result by simulation.
We let ε(h) = ‖uh

N − u(1, ·)‖L2(Ω,L2(R,C)) for every h = 2−m where m is integer.
The order of convergence will be given by

α(m) = log2

(
ε(2−m)

ε(2−m−1)

)
.

Indeed : assume that ε(h) ≈ hα
∗

for h→ 0. Then

α(m) ≈ log2

(
2−α

∗m

2−α∗m−α∗

)
= log2

(
2α

∗
)
= α∗.
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Time-splitting scheme for NLS with random dispersion

Simulations

FIGURE: α(m) = log2

(
ε(2−m)

ε(2−m−1)

)
where ε(h) = ‖uh − u(1, ·)‖L2(Ω,L2(R,C)).

The order of convergence is bounded below by 1/2.
Simulations establish that the order is 1.
Can we understand this by theoretical arguments ?
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

Previously we established an estimate on the local error :

L[t0, t, v] = ||S(t0, t)v− Y(t − t0)X(t0, t)v||L2(Ω,L2(R,C)) ≤ C(t − t0)3/2.

In order to study more precisely the scheme we establish :

Theorem (M. (preprint 2011))

We assume that v ∈ H4 and g sufficiently regular. Then for every t0 ≤ t ∈ [0, 1],

‖L[t0, t, v]− G(v)I(t0, t)‖L2(Ω,L2(R,C)) ≤ C(t − t0)2

with G(v) = i
∂2g(v)
∂x2 −

〈
(∇g)(v), i

∂2v
∂x2

〉
and I(t0, t) =

∫ t

t0
(Wt −Wθ)dθ.

(〈
(∇g)(v), i

∂2v
∂x2

〉
= (∂1g)(v)<

(
i
∂2v
∂x2

)
+ (∂2g)(v)=

(
i
∂2v
∂x2

))
.
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

Then, roughly, we can approximate :
L[t0, t, v] ≈ G(v)I(t0, t),
S(t0, t)v ≈ v + i(Wt −Wt0)∂

2
x v,

Y(t − t0)X(t0, t)v ≈ v + i(Wt −Wt0)∂
2
x v.

Then, we will use these approximations in the computation of the global error.
Recall we aim to get (formally)∥∥uh

n − u(nh, ·)
∥∥2

L2(Ω,L2(R,C))
= E[||uh

n − u(nh, ·)||2L2 ] ≤ Ch2.

Letting Sh
l = S((l− 1)h, lh) and Zh

l = Y(h)X((l− 1)h, lh), we have

uh
n − u(nh, ·) = Zh

n · · · Zh
1u0 − Sh

n · · · Sh
1u0 =

n∑
j=1

E(n,h)
j

where for every j = 1, · · · , n,

E(n,h)
j = Zh

n · · · Zh
j Sh

j−1 · · · Sh
1u0 − Zh

n · · · Zh
j+1Sh

j · · · Sh
1u0.
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

Applying the norm ‖ · ‖L2 , we get

||uh
n − u(nh, ·)||2L2 = E1(n, h) + 2RE2(n, h)

where R stands for the real part,

E1(n, h) =
n∑

j=1

||E(n,h)
j ||2L2 and E2(n, h) =

n∑
j,k=1,j<k

〈E(n,h)
j ,E(n,h)

k 〉L2 .

We first have (M. (2006), thanks to L[t0, t, v0]
2 ≤ C(‖v0‖H2)(t − t0)3)

E[E1(n, h)] ≤ Cnh3 ≤ Ch2.

Now we deal with E[E2(n, h)].
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

We successively make the approximations
Zh

l v ≈ v + iWh
l ∂

2
x v, (Wh

l = (Wlh −W(l−1)h))

L[(l− 1)h, lh, v] ≈ G(v)Ih
l , (Ih

l = I((l− 1)h, lh))
Sh

l v ≈ v + iWh
l ∂

2
x v,

in 〈E(n,h)
j ,E(n,h)

k 〉L2 with E(n,h)
j = Zh

n · · · Zh
j Sh

j−1 · · · Sh
1u0 − Zh

n · · · Zh
j+1Sh

j · · · Sh
1u0

Very roughly, something ”like this” will appear :

〈E(n,h)
j ,E(n,h)

k 〉L2 ≈ |Id + iWh
n |2 · · · |Id + iWh

k+1|2(Id + iWh
k )Ih

k |Id + iWh
k−1|2 · · ·

· · · |Id + iWh
j+1|2(Id − iWh

j )Ih
j |Id + iWh

j−1|2 · · · |Id + iWh
1 |2

Taking the expectation (and by independence of the increments of BM) :

E[〈E(n,h)
j ,E(n,h)

k 〉L2 ] ≈ (1 + h)n−kh2(1 + h)k−1−jh2(1 + h)j−1 ≤ Ch4
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

Finally, we get

E(E2(n, h)) = E

 n∑
j,k=1,j<k

〈E(n,h)
j ,E(n,h)

k 〉L2


≤ C

n∑
j,k=1,j<k

h4 ≤ Ch2,

then ∥∥uh
n − u(nh, ·)

∥∥2
L2(Ω,L2(R,C))

= E[||uh
n − u(nh, ·)||2L2 ] ≤ Ch2.

This concludes the ”proof”.

Thank you !
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