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Introduction

The equation

We aim to study the following NLS equation :

NLS with random dispersion

O 1) = W) D (0,20 + glu(t, ) V(o) € (0,1] X R

u(t = 0,x) = up(x)

where
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Introduction

The equation

We aim to study the following NLS equation :

NLS with random dispersion

O 1) = W) D (0,20 + glu(t, ) V(o) € (0,1] X R

u(t = 0,x) = up(x)

where
@ u is unknown and uy is the initial condition,
@ g is a nonlinear function,

e W is a white noise (i.e. the "derivative” of a Brownian motion W) :

Renaud Marty (IECN, University Nancy 1) Time-splitting for random NLS December 7th, 2011 4/25



Introduction

The white noise W

NLS with random dispersion

Ou O%u

()=t V(I)/(t)@(t,x) +g(u(t,x)) ¥(1,x) € (0,1] x R

u(t = 0,x) = up(x)

Roughly speaking, W can be seen as a stationary Gaussian process
satisfying for every ¢, s € [0, 1],

EW (@) =0 & EW ()W @) =0d(—s).
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Introduction

The white noise W

NLS with random dispersion

Ou O%u

()=t V({/(t)@(t,x) +g(u(t,x)) ¥(1,x) € (0,1] x R

u(t = 0,x) = up(x)

Roughly speaking, W can be seen as a stationary Gaussian process
satisfying for every ¢, s € [0, 1],

EW (@) =0 & EW ()W @) =0d(—s).

It corresponds to the normalized independent infinitesimal increments of a
Brownian motion W, which is a Gaussian process satisfying for every
t,s € [0,1],

E(W() =0 & E(W(s)W(t)) = min(r,s).
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Introduction

Sample path of the white noise W
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Introduction

Origin : nonlinear optic

NLS with random dispersion

@(t xX)=1i V({/(t)@(l‘ x) + g(u(t,x)) V(t,x) € (0,1] xR
o ox* A ’ ’

u(t = 0,x) = up(x)
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e ———C o
Origin : nonlinear optic

NLS with random dispersion

o (1,0) = i W) 55 (63) + g(u(t,0) V(6,) € (0,1 x R
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Introduction

Origin : nonlinear optic

Propagation in optical fiber

u o 0%u xR
gz(ZT)—lW()az(ZT)Jrg(( 7)) V(z,7) € (0,1] x

u(z = 0,7) = u(7)
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Introduction

Origin : nonlinear optic

Propagation in optical fiber

Ou i % 0,1] x R
87z(z’ T) =1 W(z)ﬁ(z, 7)+g(u(z, 7)) V(z,7) € (0,1] x

u(z = 0,7) = u(7)

@ z is the position on the fiber, 7 is the time,
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Oou _o 0% v xR
87z(z’ T) =1 W(z)ﬁ(z, 7)+g(u(z, 7)) V(z,7) € (0,1] x

u(z=0,7) = uy(7)

@ z is the position on the fiber, 7 is the time,
@ u(z, 7) represents the electric field on the position z on the fiber,
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Origin : nonlinear optic

Propagation in optical fiber

Oou _o 0% v xR
87z(z’ T) =1 W(z)ﬁ(z, 7)+g(u(z, 7)) V(z,7) € (0,1] x

u(z = 0,7) = u(7)

@ z is the position on the fiber, 7 is the time,
@ u(z, 7) represents the electric field on the position z on the fiber,

° vcf/ is the white noise dispersion.
¥ G. P Agrawal

Nonlinear fiber optics.
3rd ed.. Academic Press, San Diego, 2001.
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Introduction

Our questions

NLS with random dispersion
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Introduction

Our questions

NLS with random dispersion

0 1x) = 1022 (0.0) + s(ule. ) (e € (0.1] xR

u(t = 0,x) = up(x)

@ Existence and uniqueness of solution.
@ Time-splitting scheme for simulations.
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The nonlinear Schrédinger equation with random dispersion

Contents

e The nonlinear Schrédinger equation with random dispersion
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The nonlinear Schrédinger equation with random dispersion

The linear equation

The linear equation

v NG
E(t,x) =i W(t)@(t,x) V(t,x) € (0,1] xR

v(t = tg,x) = vo(x)

is solved by following the procedure :
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The linear equation

The linear equation

v NG
E(t,x) =i W(t)@(t,x) V(t,x) € (0,1] xR

v(t = tg,x) = vo(x)

is solved by following the procedure :

® vo(x) <5 W (€)
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The nonlinear Schrédinger equation with random dispersion

The linear equation

The linear equation

Ov Lo O
& 6x) =i WSS (0x) V(63) € (0,1] X R

v(t = tg,x) = vo(x)

is solved by following the procedure :

® vo(x) 5 7€)
@ we solve the Fourier linear equatlon (t &) =—i v(f/(t)gzﬁ(t, €), which
gives V(t, &) = 1y(&) exp(—i€?(W(t) — W( 0))) (It6-Stratonovich calculus)
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& 6x) =i WSS (0x) V(63) € (0,1] X R
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gives V(t, &) = 1y(&) exp(—i€?(W(t) — W( 0))) (It6-Stratonovich calculus)

o 3(r,&) X5 v(t, x)
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The nonlinear Schrédinger equation with random dispersion

The linear equation

The linear equation

Ov Lo O
& 6x) =i WSS (0x) V(63) € (0,1] X R

v(t = tg,x) = vo(x)

is solved by following the procedure :

® vo(x) 5 7€)

@ we solve the Fourier linear equatlon (t &) =—i v(f/(t)gzﬁ(t, €), which
gives V(t, &) = 1y(&) exp(—i€?(W(t) — W( 0))) (It6-Stratonovich calculus)

0 (t,&) 5 v(1,x)

We define X by
X(to, t)vo(x) = v(z, x).
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The nonlinear Schrédinger equation with random dispersion

The nonlinear equation

NLS with random dispersion

@(t x) =i v({/(t)@(t x) + g(u(t,x)) ¥(t,x) € (0,1] xR
ot ox2 ' ’ ’

u(t = 0,x) = up(x)
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The nonlinear Schrédinger equation with random dispersion

The nonlinear equation

NLS with random dispersion

Ou o O%u

E(I’x) = W(t)@(t,x) + g(u(t,x)) V(t,x) € (0,1] x R

u(t = 0,x) = up(x)

is written in the integral form :

NLS with random dispersion in integral form

u(t,x) = X(0, t)up(x) + /OtX(O,t)g(u(G,x))dO Y(t,x) € (0,1] xR

Renaud Marty (IECN, University Nancy 1) Time-splitting for random NLS December 7th, 2011 12/25



The nonlinear Schrédinger equation with random dispersion

Existence and uniqueness

Letuy € L2. We assume that g is Lipschitz. Then, there exists a unique
solutionu € C([0,1],L2) a. s.
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The nonlinear Schrédinger equation with random dispersion

Existence and uniqueness

Theorem

Letuy € L2. We assume that g is Lipschitz. Then, there exists a unique
solution u € C([0, 1], L2) a. s. Moreover, ifuy € H?, g two times differentiable
and its derivatives up the order 2 are bounded, then u € C([0, 1], H?) a. e.
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The nonlinear Schrédinger equation with random dispersion

Existence and uniqueness

Theorem

Letuy € L2. We assume that g is Lipschitz. Then, there exists a unique
solution u € C([0, 1], L2) a. s. Moreover, ifuy € H?, g two times differentiable
and its derivatives up the order 2 are bounded, then u € C([0, 1], H?) a. e.

The proof consists of a fixed point procedure on the integral form

NLS with random dispersion in integral form

u(t,x) = X(0, t)up(x) + /OtX(H,t)g(u(O,x))dQ Y(t,x) € (0,1] xR

B
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Existence and uniqueness

Letuy € L2. We assume that g is Lipschitz. Then, there exists a unique
solution u € C([0, 1], L2) a. s. Moreover, ifuy € H?, g two times differentiable
and its derivatives up the order 2 are bounded, then u € C([0, 1], H?) a. e.

The proof consists of a fixed point procedure on the integral form

NLS with random dispersion in integral form

u(t,x) = X(0, t)up(x) + /OtX(H,t)g(u(O,x))dQ Y(t,x) € (0,1] xR

3 R.Marty,
On a splitting scheme for the nonlinear Schrédinger equation in a random
medium,
Commun. Math. Sci. Volume 4, Number 4 (2006), 679-705.
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The nonlinear Schrédinger equation with random dispersion

Extensions
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The nonlinear Schrédinger equation with random dispersion

Extensions

For a cubic nonlinearity g(u) = i

B
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The nonlinear Schrédinger equation with random dispersion

Extensions

For a cubic nonlinearity g(u) = i|u|*u

[3 A.De Bouard and A. Debussche,
The nonlinear Schrédinger equation with white noise dispersion,
Journal of Functional Analysis, 259, pp. 1300-1321 (2010)
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The nonlinear Schrédinger equation with random dispersion

Extensions

For a cubic nonlinearity g(u) = i|u|*u

[3 A.De Bouard and A. Debussche,

The nonlinear Schrédinger equation with white noise dispersion,
Journal of Functional Analysis, 259, pp. 1300-1321 (2010)

For a quintic nonlinearity g(u) = iu|*u

B
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The nonlinear Schrédinger equation with random dispersion

Extensions

For a cubic nonlinearity g(u) = i|u|?u

[3 A.De Bouard and A. Debussche,

The nonlinear Schrédinger equation with white noise dispersion,
Journal of Functional Analysis, 259, pp. 1300-1321 (2010)

For a quintic nonlinearity g(u) = iu|*u

[3] A.Debussche and Y. Tsustumi,
1D quintic nonlinear Schrédinger equation with white noise dispersion,
Journal de Mathématiques Pures et Appliquées, 96, pp. 363-376 (2011)
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Time-splitting scheme for NLS with random dispersion

Contents

e Time-splitting scheme for NLS with random dispersion
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Time-splitting scheme for NLS with random dispersion

Notation

We introduce three operators :

d Marty (IECI
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Time-splitting scheme for NLS with random dispersion

Notation

We introduce three operators :
@ S such that v(z, x) = S(#, t)vo(x) solves

ov o 82

E: 82 +g(v) and vt =ty,x) = vo(x)
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Time-splitting scheme for NLS with random dispersion

Notation

We introduce three operators :
@ S such that v(z, x) = S(#, t)vo(x) solves

0 o 9%y
5‘; i Wﬁ glv) and v(t =19,x) = vo(x)

@ X such that v(t,x) = X(t, t)vo(x) solves

@ 0 0%

5 W@ and  v(t = f9,x) = vo(x)
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Time-splitting scheme for NLS with random dispersion

Notation

We introduce three operators :
@ S such that v(z, x) = S(#, t)vo(x) solves

0 o 9%y
5‘; i Wﬁ glv) and v(t =19,x) = vo(x)

@ X such that v(t,x) = X(t, t)vo(x) solves

CD_ o
oV ox

@ Y such that v(z,x) = Y(r — fp)vo(x) solves

and  v(r = fy,x) = vo(x)

% =g(v) and vt =19,x) = vo(x)
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Time-splitting scheme for NLS with random dispersion

The scheme : definition and convergence
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Time-splitting scheme for NLS with random dispersion

The scheme : definition and convergence

We subdivise [0, 1] into N intervals of lenght 4 = 1/N and we aim to construct
{uZ}nG{Oq,ly- N} such that {uﬁ}ne{())]}... N} Xh—0 {u(nh, ')}HE{OJ,”- N}
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Time-splitting scheme for NLS with random dispersion

The scheme : definition and convergence

We subdivise [0, 1] into N intervals of lenght 4 = 1/N and we aim to construct
{ul}rego1,... wy such that {u}ucqo.1,.. vy R0 {u(nh, ) }ueqo,r,.. vy We let :
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Time-splitting scheme for NLS with random dispersion

The scheme : definition and convergence

We subdivise [0, 1] into N intervals of lenght 4 = 1/N and we aim to construct
{ul}rego1,... wy such that {u}ucqo.1,.. vy R0 {u(nh, ) }ueqo,r,.. vy We let :
@ initial condition :
ug = ugp,
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Time-splitting scheme for NLS with random dispersion

The scheme : definition and convergence

We subdivise [0, 1] into N intervals of lenght 2 = 1/N and we aim to construct
{ug}ne{()’]’.,, N} such that {Mﬁ}ne{()J,.“ N} h—0 {M(l’lh, ')}nE{O,l,w N}- We let :

@ initial condition :
h

Uy ‘= Uo,
e foreveryn € {1,--- ,N} : u'(¢) is defined by

ul = Y(W)X((n — 1)h,nh)ul_,.

n

(Remember that u(nh,-) = S((n — 1)h,nh)u((n — 1)h,-)...)

Renaud Marty (IECN, University Nancy 1) Time-splitting for random NLS December 7th, 2011 17/25



Time-splitting scheme for NLS with random dispersion

The scheme : definition and convergence

We subdivise [0, 1] into N intervals of lenght 4 = 1/N and we aim to construct
{uZ}ne{O,l,m N} such that {uﬁ}ne{g)l,... N} Fh—0 {u(nh, ')}n€{071,~- N}- We let :
@ initial condition :
ug = ugp,

@ foreverync {lI,--- ,N} : u'(¢) is defined by

ul = Y(W)X((n — 1)h, nh)u!

n n—1-

Theorem (M. (2006))

Letuy € H*(R,C) and assume that g is sufficiently reqular. Then there exists C
such that for every h €]0, 1] and n satisfying nh < 1, we have

\/]E |:HMZ - u(nha ')||12‘2(R,C):| = ||uz - u(nh, ')HLZ(Q,LZ(R,(C)) < C\/E
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Time-splitting scheme for NLS with random dispersion

Ideas of the proof
We define the local error between #, and r starting from an initial condition v

by :
Llto, 1, vo] := [|S(to, t)vo — Y (t — t0)X (t0, )vol|r2(2,2(R,C)) -
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Time-splitting scheme for NLS with random dispersion

Ideas of the proof

We define the local error between #, and r starting from an initial condition v
by :
E[l‘o, t, Vo] = ||S(l0, l)VO = Y(l‘ = IQ)X(I(), t)VOHLZ(Q,LZ(]R,(C))‘

@ Estimate for the local error :
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@ Estimate for the local error :

)

Cloto] < Cllolle)E(| [ ) = (o0
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Time-splitting scheme for NLS with random dispersion

Ideas of the proof
We define the local error between #, and r starting from an initial condition v

by :
E[l‘o, t, Vo] = ||S(l0, l)VO — Y(l‘ — IQ)X(I(), t)VOHLZ(Q,LZ(]R,(C))‘

@ Estimate for the local error :

Clo.ton] < Cllolle)B(| [ () = wio)a0)).
< Cllvoll)t — )7

@ Estimate on the global error :
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Time-splitting scheme for NLS with random dispersion

Ideas of the proof
We define the local error between #, and r starting from an initial condition v

by :
Llto, 1, vo] := [|S(to, t)vo — Y (t — t0)X (t0, )vol|r2(2,2(R,C)) -

@ Estimate for the local error :

Clo.ton] < Cllolle)B(| [ () = wio)a0)).
< Cllvoll)t — )7

@ Estimate on the global error : we have

n

lwhy = w(nh, Mz rmey < €Y LIG = Dhjhu(( - 1h,)]

j=1
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@ Estimate on the global error : we have

lwhy = w(nh, Mz rmey < €Y LIG = Dhjhu(( - 1h,)]

j=1

czn:fﬁ/z
j=1

IN
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@ Estimate for the local error :
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@ Estimate on the global error : we have
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Time-splitting scheme for NLS with random dispersion

Ideas of the proof
We define the local error between #, and r starting from an initial condition v

by :
Llto, 1, vo] := [|S(to, t)vo — Y (t — t0)X (t0, )vol|r2(2,2(R,C)) -

@ Estimate for the local error :

Clo.ton] < Cllolle)B(| [ () = wio)a0)).
< Cllvoll)t — )7

@ Estimate on the global error : we have

lwhy = w(nh, Mz rmey < €Y LIG = Dhjhu(( - 1h,)]

j=1

thW = cnl?? < cVh. O
j=1

IN
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Time-splitting scheme for NLS with random dispersion

Simulations

The order of convergence is bounded below by 1/2.
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Simulations

The order of convergence is bounded below by 1/2.
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The order of convergence is bounded below by 1/2.
We aim to illustrate the previous result by simulation.

We let e(h) = [luly — u(1, )|l 12(0,2(r,c)) for every h = 27 where m is integer.
The order of convergence will be given by

Indeed : assume that (k) ~ h*" for h — 0.
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Time-splitting scheme for NLS with random dispersion

Simulations

The order of convergence is bounded below by 1/2.
We aim to illustrate the previous result by simulation.

We let e(h) = [luly — u(1, )|l 12(0,2(r,c)) for every h = 27 where m is integer.
The order of convergence will be given by

Indeed : assume that e(h) ~ h*" for h — 0. Then

—a*m
2

a(m) ~ 10g2 (W) = 10g2 (204*) = Oé*.
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Simulations

T+ alphacm

FIGURE: a(m) = log, (%) where e(h) = [l — u(1, )|l 20.2.0))-

@ The order of convergence is bounded below by 1/2.
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Simulations
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FIGURE: a(m) = log, (%) where e(h) = [l — u(1, )|l 20.2.0))-

@ The order of convergence is bounded below by 1/2.
@ Simulations establish that the order is 1.
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Time-splitting scheme for NLS with random dispersion

Simulations

T+ alphacm

FIGURE: a(m) = log, (%) where e(h) = [l — u(1, )|l 20.2.0))-

@ The order of convergence is bounded below by 1/2.
@ Simulations establish that the order is 1.
@ Can we understand this by theoretical arguments ?

Renaud Marty (IECN, University Nancy 1) Time-splitting for random NLS December 7th, 2011 20/25



Time-splitting scheme for NLS with random dispersion

Exact order of convergence
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

Previously we established an estimate on the local error :

Llto,t,v] = |IS(to, )v — Y(t — 1o)X (t0, )WV 220y < C(t— t0)3/2.
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Exact order of convergence

Previously we established an estimate on the local error :
Llto,t,v] = |IS(to, )v — Y(t — 1o)X (t0, )WV 220y < C(t— 10)%/2.

In order to study more precisely the scheme we establish :
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

Previously we established an estimate on the local error :
Llto,t,v] = |IS(to, )v — Y(t — 1o)X (t0, )WV 220y < C(t— 10)%/2.
In order to study more precisely the scheme we establish :

Theorem (M. (preprint 2011))

We assume thatv € H* and g sufficiently regular. Then for every ty <t € [0, 1],
||‘C[t07 t’ V] - g(V)I(to, t)”LZ(Q’LZ(R,C)) S C(t - fo)z

8;:5;) _ <(Vg)(v),igx‘2}> and Z(ty,t) = / (W, — Wy)db.

fo

((Va0.153) = @oom(i53) + @03 (i53) ).
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

Then, roughly, we can approximate :
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

Then, roughly, we can approximate :

@ Llty, t,v] = G(v)Z(1y,1),

@ S(tg, t)v v +i(W, — W,)52v,

@ Y(t—t)X(to, t)v = v+ i(W, — W, )?v.
Then, we will use these approximations in the computation of the global error.
Recall we aim to get (formally)

2
sty — u(nh, ')HLZ(Q,U(R,C)) = E[||u} — u(nh,-)||7.] < Ch*.
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Then, roughly, we can approximate :

@ Llty, t,v] = G(v)Z(1y,1),

@ S(tg, t)v v +i(W, — W,)52v,

@ Y(t—t)X(to, t)v = v+ i(W, — W, )?v.
Then, we will use these approximations in the computation of the global error.
Recall we aim to get (formally)

2
sty — u(nh, ')HLZ(Q,U(R,C)) = E[||u} — u(nh,-)||7.] < Ch*.

Letting S = S((I — 1)k, Ih) and Z!' = Y(R)X((I — 1)h, Ih),
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@ S(tg, t)v v +i(W, — W,)52v,

@ Y(t—t)X(to, t)v = v+ i(W, — W, )?v.
Then, we will use these approximations in the computation of the global error.
Recall we aim to get (formally)

2
sty — u(nh, ')HLZ(Q,U(R,C)) = E[||u} — u(nh,-)||7.] < Ch*.

Letting 7 = S((I — 1)h, k) and Z!' = Y(h)X((I — 1)h, Ih), we have

ul —u(nh, ) =2"- - Ztug — S" - - Shug
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

Then, roughly, we can approximate :

@ Llty, t,v] = G(v)Z(1y,1),

@ S(tg, t)v v +i(W, — W,)52v,

@ Y(t—t)X(to, t)v = v+ i(W, — W, )?v.
Then, we will use these approximations in the computation of the global error.
Recall we aim to get (formally)

2
sty — u(nh, ')HLZ(Q,U(R,C)) = E[||u} — u(nh,-)||7.] < Ch*.

Letting 7 = S((I — 1)h, k) and Z!' = Y(h)X((I — 1)h, Ih), we have
ul —u(nh, ) =2"- - Ztuy — S'ug —ZE"h

where forevery j=1,--- ,n,

Ej(n,h) =7".. 'Zth;’,l oSty — 2% ZfiHth oo Shuy.
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

Applying the norm || - ||z, we get
[ty — w(nh, )7 = E1(n, h) + 2RE (n, h)

where R stands for the real part,

E(n,h) =S [E™|Z and &mh)y= S (EMEM)p.
j=1 Jk=1,j<k
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

Applying the norm || - ||z, we get
[ty — w(nh, )7 = E1(n, h) + 2RE (n, h)

where R stands for the real part,

n n

El(n,h):ZHEj("’h) 2 and &(n,h) = Z <Ej("’h),E]E"’h)>Lz.
=1 Jk=1j<k

We first have (M. (2006), thanks to L]ty 7, vo]* < C(||vollz2)(t — 1))

E[€i(n, h)] < Cnk® < CH?.
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

Applying the norm || - ||z, we get
[ty — w(nh, )7 = E1(n, h) + 2RE (n, h)

where R stands for the real part,

El(n,h):ZHEj("’h) 2 and &(n,h) = Z <Ej("’h),E]E"’h)>Lz.
=1 Jk=1j<k

We first have (M. (2006), thanks to L]ty 7, vo]* < C(||vollz2)(t — 1))
E[€i(n, h)] < Cnk® < CH?.

Now we deal with E[&;(n, h)].
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

We successively make the approximations

(n,h)

n(E"Y EMM)p with ECY =zl ZhSE - St — Z0 - 28 St S
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Exact order of convergence

We successively make the approximations
@ Zv v+ iWd2y, (W' = (Wi — Wa_iy))

(n,h)

n(E"Y EMM)p with ECY =zl ZhS - St — 28 - 28 St S

Renaud Marty (IECN, University Nancy 1) Time-splitting for random NLS December 7th, 2011 24/25



Time-splitting scheme for NLS with random dispersion

Exact order of convergence

We successively make the approximations
@ Zv v+ iWd2y, (W' = (Wi — Wa_iy))
o L[(I— kb ~GWI,  (TF=T((I— )h,Ih))

in (E"" ESP) o with B = Z0 - ZISE - Stug — Z0 - 28 SE - Shug
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

We successively make the approximations
@ Zv v+ iWd2y, (W' = (Wi — Wa_iy))
@ L[(I— 1)h,lh,v] =~ G(v)II, (Z! = Z((I — 1)h, Ih))
@ Shv v+ iWd?y,

in <Ej(n,h)’E(n ,h) > with E n,h)

Z,’f"'Z,hSJ}-',l"'S?MO—ZZ’"'ZﬁlS}l'“S?MO
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

We successively make the approximations

® Zjv~v+iW oy, (W} = (Wi — Wi—y))

o L[(I— kb ~GWI,  (TF=T((I— )h,Ih))

@ Shv v+ iWd?y,
in (", E"") 2 with B = Z! ... ZbSt| .. Slug — Z8 - Z], S - - Shug
Very roughly, something "like this” will appear :

(EMEMPY e~ I iWEP - Hd A+ W P - W+ W

s d + W P(ld — iWHI I + W) - |1 + W]
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

We successively make the approximations

@ Z'vr v+ iWdly, (W' = (Wi — Wa_iy))

o L[(I— kb ~GWI,  (TF=T((I— )h,Ih))

@ Shv v+ iWd?y,
in (", E"") 2 with B = Z! ... ZbSt| .. Slug — Z8 - Z], S - - Shug
Very roughly, something "like this” will appear :

(EMEMPY e~ I iWEP - Hd A+ W P - W+ W

s d + W P(ld — iWHI I + W) - |1 + W]

Taking the expectation (and by independence of the increments of BM) :

E(E™ EMP)p] ~  (1+h)" K1+ h) ' n2 (1 + hy ' < cht
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

Finally, we get

E&mn) = E[ Y (EM EM)

Jjk=1<k

< C Z < ch?,
Jk=1,j<k
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

Finally, we get

E(&(nh) = E Z (E™M B

Jk=1,j<k
n
< C > w<ow,
Jok=1,j<k

then
[

This concludes the "proof”.

||L2(Q I2(R, (C)) Hlu - u(nh )Hé] < Chz'
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Time-splitting scheme for NLS with random dispersion

Exact order of convergence

Finally, we get

E&mn) = E[ Y (EM EM)

Jk=1,j<k
n
< C > w<ow,
Jok=1,j<k

then 5
6 = w(nh, | 2 e 2y = Ellliy — ulnh,-)[[7] < €.

This concludes the "proof”.

Thank you'!
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