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Environment 

System 

“Few” relevant degrees of freedom 
needs to be selected (System) 

Environment 

System 



Langevin equation 

A. Einstein, (1905) “the theory of Brownian motion”  

Macroscopic 
slowing down  

Rapidly fluctuating  
Force with 

Langevin equation and stochastic process 

time 

dB
(t

) 

t t’ t and t’ 
independent 

Markov or Wiener Process 

“Zoology” in the theory open quantum systems: approximations 
Environment 

System 

Exact S+E evolution: 

Reduced System  evolution : 

Weak coupling  
(Born approximation) 

+ Stationary Env. 

Separable  
interaction  

Standard Approximations 
Master equation: 

Memory effect 

t-s 

Markov  
approximation 

Gardiner and Zoller, Quantum noise (2000)  
Breuer and Petruccione, The Theory of Open Quant. Syst. 
    

S+E Hamiltonian : 



Standard Schroedinger equation: 

Deterministic evolution 

Stochastic Schroedinger equation (SSE): 

Stochastic 
operator : 

time 

…
 

Introducing the concept of Stochastic Schroedinger equation 

Average density 

The dynamics of the system+environment can be simulated exactly  
with quantum jumps (or SSE) between “simple” state. 

Interesting aspects related to the introduction of  Stochastic Schröd. Eq.    

Environment 

System 

Hamiltonian 

{ with 

A stochastic version 

Exact dynamics 

At t=0 

Average evolution  

+ + 



A simple illustration: spin systems  
Lacroix, Phys. Rev. A72, 013805 (2005). 

A two-level system interacting with a bath of spin systems 

environment 

system 

System 
P 

P 

Coupling 

Introduction of stochastic mean-field:  

H   mean-field   +    “Noise” 

Direct application of SSE:  
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1000 trajectories 

Exact 
evolution 

Average over  
Stochastic evolution  
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  time 
0 0.5 1.0 1.5 

System space  

<S1> 

<S2> 

<B> Exact evolution 

Relevant degrees  
of freedom: system 

Recent advances : introducing the stochastic master equation  
Lacroix,  Phys. Rev. E77 (2008). 

Stochastic master equation for open quantum systems 

Indept .evol. 

Mean-field 
Non-local in  

time 

drift 

noise 

In many situations the system  
and/or environment initial state  
Is more complex: 

Requires to develop 
the theory directly  
on !S or !E. 



Application : spin-boson model + heat bath 

!z=+1" !z=-1"

#"

$0"

Leggett et al, Rev. Mod. Phys (1987) 

Coupling 

System + bath 

weak coupling 

strong coupling 

Result (2000 trajectories)  

Stockburger, Grabert,   
PRL (2002) 

Comparison with related work :  
Path integrals + influence functional 

Zhou et al,   
Europhys. Lett. (2005) 

224 traj. ! 

Benchmark for other techniques treating Non-Markovian effects 

Example: «!Time-Convolutionless method!» (TCL),  
    Breuer, Kappler, Petruccione, Ann. Phys., 291 (2001).  

Exact (stochastic) 

TCL 



Under development: applications to system with potential energy surface 

V(Q) 

Q 

Environment 

Benchmark : The Caldeira-Leggett model  

Coupling 

System + heat-bath 

More insight in the stochastic process 

x 

x 

tim
e 

x 

Observables evolution Complex noise on both P and Q 

Fluctuations 

Quantum Statistical 

Quantum 
Quantum+Stat 

Exact 

Hupin, Lacroix, Phys. Rev. C81, 014609 (2010) 



Preliminary Results  

Exact 
This work 
TCL 

Position and momentum evolution 

T = 0.1 h%0 T = h%0 

Exact 
This work 
TCL 

Quantum + Statistical fluctuations 

Correct asymptotic  
Behavior 

Problem!!! 
-Non-harmonic potential 
Does not work 

T = 0.1 h%0 T = h%0 



From open to closed Many-Body interacting systems  

System space  

<S1> 

<S2> 

<B> 
Exact evolution 

Open systems 

One Body space  

<A1> 

<A2> 

<B> 
Exact evolution 

Closed systems 

Slater det., Quasi-particle,… 

D. Lacroix, Annals of Physics, 322 (2007). 

Mean-field  from variational principle  

More insight in mean-field dynamics:  

Exact state Trial states 

{ 
The approximate evolution is obtained  
by minimizing the action:  

Good part: average evolution 
exact Ehrenfest 
evolution 

Missing part: correlations  

Environment 

System 

Complex 
self-interacting  

System 

Hamiltonian splitting 

System Environment 

One Body space  

<A1> 

<A2> 

<B> 

Exact evolution 

Mean-field 

Relevant degrees  
of freedom 

The idea is now to treat the missing information 
as the Environment for the Relevant part (System) 



<A1>  

Exact evolution 

<A2>  

Existence theorem : Optimal stochastic path from observable evolution  

with 

D. Lacroix, Ann. of Phys. 322 (2007). 

… 
Mean-field 

Mean-field level 

Mean-field + noise 

Theorem : 
One can always find a stochastic process for trial  
states such that 
evolves exactly over a short time scale. 

Valid for  

or 
In practice  

t>0 
Mean-field evolution: 

x 

t>0 

Reduction of the information: I want to simulate the expansion with Gaussian wave-
function having fixed widths. 

t=0 

with 

Relevant/Missing information:  

Relevant degrees  
of freedom Missing information 

Trial states  

Coherent states  
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Stochastic c-number evolution 
 from Ehrenfest theorem  

Densities  

with 

Nature of the stochastic mechanics 

with 

the quantum wave spreading can  
be simulated by a classical brownian  
motion in the complex plane  

x 

x 

ti
m
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x 

fluctuations mean values 
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The method is general. 
the SSE are deduced easily 

Ehrenfest theorem  BBGKY hierarchy 

SSE for Many-Body Fermions and bosons 
D. Lacroix, Ann. Phys. 322 (2007) 

Starting point:  

with 

Observables 

Fluctuations 

with 

Stochastic one-body evolution 

The mean-field appears naturally  
and the interpretation is easier 

extension to Stochastic TDHFB  
D. Lacroix, arXiv nucl-th 0605033 
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time 

two-level system 
Bosons 

but… 

the numerical effort can be  
reduced by reducing the number  
of observables 

unstable  
trajectories 



Part III  
Dissipation in Many-Body 

Systems with SSE 

Some (non-exhaustive) history 

Open systems 

Open systems  
Non-Markovian 

Some reviews 

First introduction 
measurement theory 

80’s 

SSE becomes a 
practical tool 

90’s 

Exact 
Many-Body 
Thermal… 

00’s 



Application to self-interacting system 
Interpretation as a “system+environment” 

Quantum jump method -Dissipation 

Exact dynamics 

with SSE on simple state  

Then, the average dyn. identifies with  
the exact one 

1 For total wave 

For total density 2 

Projection technique 
Weak coupling approx. 

Markovian approx. 

At t=0 

Approximate  
Dissipative dynamics 

Gardiner and Zoller, Quantum noise (2000)  
Breuer and Petruccione, The Theory of Open Quant. Syst. 
    

Can be simulated by stochastic eq. on |&>,  
The Master equation being recovered using :  

Lindblad master equation: 

Environment 

System 

One Body space  

<A1> 

<A2> 

<B> 

Exact evolution 

Mean-field 

Dissipation in self-interacting systems 
Y. Abe et al, Phys. Rep. 275 (1996) 
D. Lacroix et al, Progress in Part. and Nucl. Phys. 52 (2004) 

Short time evolution 

Approximate long time evolution+Projection 

Correlation 

with 

Propagated initial  
correlation  

Dissipation and fluctuation 

Random initial  
condition 

Dissipation 

projected two-body  
effect 



Alternative formulation with Stochastic Schroedinger equations 

We assume that the residual interaction 
 can be treated as an ensemble of  
two-body interaction: 

Statistical assumption in the Markovian limit : 

Weak coupling approximation : perturbative treatment 

Residual interaction in the mean-field  
interaction picture 

R.-G. Reinhard and E. Suraud, Ann. of Phys. 216, 98  (1992) 

GOAL: Restarting from an uncorrelated state  we should:    

2-interpret it as an average over jumps between “simple” states    
1-have an estimate of    

Time-scale and Markovian dynamics 

{ 
t t+Dt 

R
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Collision time 

Average time between two collisions 

Mean-field time-scale  

Hypothesis : 

Two strategies can be considered: 

Considering densities directly  
(philosophy of dissipative treatment) 

Considering waves directly 
(philosophy of exact treatment) 



Simplified scenario for introducing fluctuations beyond Mean-field  

Interpretation of the equation on waves as an average over jumps:  

Let us simply assume that wit
h 

D. Lacroix, PRC73 (2006) 

with Assuming  

and   

SSE in one-body space 

rm
s 

(fm
) 

time (fm/c) 

TDHF 
Average evol. 

Application Monopole vibration in 40Ca 

t<0 External   
potential 

Stochastic part: 

Diffusion of the rms around the mean value 

Standard deviation 

Compression Dilatation 

Similar to Nelson stochastic theory 
Nelson, Phys. Rev. 150, 1079 (1966). 
Ruggiero and Zannetti, PRL 48, 963 (1982).  

Summary and Critical discussion on the simplified scenario 

The stochastic method is directly applicable to nuclei 

It provide an easy way to introduce fluctuations beyond mean-field  

It does not account for dissipation. 
In nuclear physics the two particle-two-hole components dominates  
the residual interaction, but                           !!!  



Quantum jump with dissipation: link between Extended TDHF and Lindblad eq.   

with  

Initial simple state 

One-body density 
Master equation  

step by step 

2p-2h nature  
of the interaction  

with  

Separability of the  
interaction 

Dissipation contained in Extended TDHF is included  
The master equation is a Lindblad equation   
Associated SSE  D. Lacroix, PRC73 (2006) 

SSE on single-particle state : 

with 

time (arb. units) 
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mean-
field 

average evolution 

Application to Bose condensate   

N-body density:  

1D bose condensate with gaussian two-body interaction 

The numerical effort is fixed by the number of Ak 
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t=0 
t>0 

mean-field 

average evolution 



Simplified QD 

Fluctuation ! 
Dissipation 

Generalized QD 

Fluctuation ! 
Dissipation ! 

Exact QD 

Everything ! 

Mean-field 

Fluctuation 
Dissipation 

variational QD   

Partially  
everything ! 

Numerical issues  

Flexible Flexible Fixed Fixed 

Approximate evolution 

Numerical 
instabilities 
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Stochastic Equations = MF (non linear term) + stochastic 

Different application: 

Open quantum systems – exact reformulation 

-Two level system coupled to a set of 2 levels OK 

-systems coupled to a heat bath: 

-two level system (tunneling) - OK 

-harmonic oscillator - OK 

-anharmonic oscillator – NOT OK 

Open quantum systems- exact reformulation 

-Bosonic 1D systems – NOT OK 

Open quantum systems- approximate reformulation 

-Bosonic systems in 1D – OK 
-Fermionic systems in 3D – OK 



Semiclassical version for approaches in Heavy-Ion collisions 

time 
Vlasov 

BUU, BNV 

Boltzmann- 
   Langevin 

Adapted from J. Randrup et al, NPA538 (92).  

Application in quantum systems  
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RPA  
Coupling  

to ph-phonon 
Coupling  

to 2p2h states  

2p
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D. Lacroix, S. Ayik and P. Chomaz,  
Progress in Part. and Nucl. Phys. (2004) 

mean-field mean-field 
+fluctuation 
+dissipation 



Reverse process : can we treat the S+E exactly ? 

Applications : measurement, decoherence, quantum/classical transitions… 

Non local effect in time :  
Non-Markovian process… 

R. Feynman  Influence functional technique,  
(Feynman, Vernon Annals of Physics, 24, (1963).)   

A.J. Leggett 

Caldeira-Leggett model, (Annals of Physics, 149, (1983).)   

System Environment 

time time 

Interaction 
t t 
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Feed-back 


