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2 U(t) = Ty { hU—IAU=if(U)

U(0) = Uy

Thalhammer

Operator splitting
Two elementary “blocks”.

O=x% "y,
W(t)= YW, {aw:o) if(vl\//‘:)

"Explicit" solutions - L2 norm is conserved
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Strang Formulae.

StUp= V"X V2 Uy  StUp— Ty = O(£3),

Operator splitting

ShUy= X2V X12Uy  ShUy— T Uy = O(3),

Higher order
Zi UO — X t wa txagt ngi .. 'Xast Ybsi UO7

with (real or complex) method coefficients (a;, b));_;-
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Zt Uoz Xa1twal‘Xagtybgi'”XastYbeUO’
= T'Up+ O(tP*1).

Operator splitting

A fourth-order method involving four compositions by
Yoshida, i.e., p = s = 4, possesses the real coefficients

1 V2
a1:o? az:a4:%:f%7 33272:—2:/3}27

bi=bi=3%n, bo=bs=3}(ri+%).




Basis of operator splitting

Operator The coefficients of a favourable fourth-order splitting method
Spliting proposed by S. Blanes and P.C. Moan, J. Comput. Appl.
e Math. (2002), and a related third-order splitting method

M. (Embedded formula) constructed by M. Thalhammer are
BB displayed in next table :

L] 3 L] b
1 0 1,7 0.0829844064174052
2,7 0.245298957184271 2,6 0.3963098014983680
3,6 0.604872665711080 3,5 | —0.0390563049223486
45 7—(apta) || 4 1—2(by +bo + bs)
[ | 3 L] b |
1 aj 1 b1
2 as 2 b2
3 as 3 b3
4 as 4 by
5 0.3752162693236828 5 0.4463374354420499
6 1.4878666594737946 6 —0.0060995324486253
7 —1.3630829287974774 7 0
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Splitting With two time integration solvers :
S

Descombes , Sp1At UO — TAtUO = ﬁ(Atp) — Sphttll’lg formula

M.
Thalhammer

oAt At 1
Sp; Up—T>'Uy=0O(AtP™") =  Embedded spl. formula

Operator splitting

and considering

~A
HSp?f U — Sp; ‘ol ~ O(AtP~1) < Tol

yields

Tol
HSpftUo - §>1AtUo

Atnew — At p—1




Outline

Operator
Splitting

s. Standard numerical analysis of operator splitting
Descombes ,

M.
Thalhammer

m Error estimate / Lie formalism / Finite dimension

Error estimate



Error estimate

Operator
Splitting

S

Descol\lll;1bes. Error estimate -> Lie formalism. For an ODE y = f;(y), we

LRl denote by ¢! the exact solution, we introduce the differential
operator (Lie derivative)

d

Dy=) fij=—.

Lhiay

For a smooth function from R” to R”, we have

Cf,lfF(qh"(yo)) = F'(9i(»0)) i (9 (%0)) = (D1F) (¢} (o))
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tk

F(0{(50) = ¥ 5 (D¥F) (o) = € F(30):

k>0

With F =Id, we obtain

¢} (yo) = ePId(yo).
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Moreover, if we introduce a second flow @3, we have :

(@59}) (o) = e™1e™21d(yo).
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P5(y0) — (950} (yo) = e'P1P21d(yg) — ePreP21d(yo),

we then work with linear operators | For example, for two
linear operators A et B, we have

2
QU(ATB) _ A8 _ %[A,B] +0(83),

this yields,

2
94(y0) — (959}) (v0) = 5 [D1. Deld(y0) + O(E),
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t2
Thalhl\g;nmer (pé(y()) - ((pé (p‘%) (yo) = E [D1 ’Dz]Id(YO) + O(t3)7

and [D4,D5] is now a Lie bracket...

B s Ofa 9
pioa =1 (2 (G- 5en)) 5

1 J

We are not limited to the finite dimension...

P)
Dy =Y fij—
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s We consider an initial value problem of the form

Descombes ,
M

Thalhammer u/(t) — F(u(t)) , 0 <t< T,
u(0) given,

where the structure of the unbounded nonlinear
operator F: D(F) C X — X suggests a decomposition into
two parts

F(v)=A(v)+B(v), veD(A)ND(B),

with unbounded nonlinear operators A : D(A) C X — X and
B:D(B) C X — X, such that D(F) = D(A)ND(B) # 0.
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Operator

Spliting The exact solution of the evolutionary problem is (formally)
s. given by
e u(t) = &(tu(0)), 0<t<T,

Thalha;nmer
with evolution operator &= depending on the actual time and
the initial value. We employ the formal notation

u(t) = ePru(0), 0<t<T,

which is suggestive of the (less involved) linear case.
Here, the evolution operator e®F and the Lie-derivative Dg
associated with F are given by

eP*Gv=G(&(tv)), 0<t<T, DpGv=G'(v)F(),

for any unbounded nonlinear operator G: D(G) € X — X
with Fréchet derivative G'.
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Descol\lll;1bes- Whenever G is the identity operator, we write

Thalhammer

ePry = & (t,v), 0<t<T, Dpv=F(v),

for short.
We note the relation

Dr = & e

This is in accordance with the identity L = &|,_o e'", valid for
instance for any bounded linear operator L : X — X with the
exponential function defined by the power series.
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Recalling that for example, for two linear operators A et B,
we have

2
QU(ATB) _ A B _ %[A,B] +0(83),

We apply this formula in the nonlinear framework with A
and f.



Error estimate

Operator
Splitting

Sh
Descombes ,
M.
Thalhammer

(Df(DAId) — DA (DfId)) Up,
82u0

ox2’

= (Dald) (ug)f(uo) — (Dfld)'(uo)

02 0%u
= 32 (f(up)) _F(HO)WZO

and

92f(ug) 92ug , dug \ 2
0x2 ) ax2 £'(u0) <¢9X> '
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Application to Lie et Strang formulae yields

t2
Thup — Y'X'ug = — " (ug) (dhuo)? +O(t°).

3
i (219(0) (2 + B (0) h10 ) (1su0))
2
—igf (u)(Axxti)?

— i ((F(0)f® (o) + £ (u0)¢ (u0) ) (Byu0)?) +O(t*)
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with (small) parameter € > 0, real-valued external potential

U:RY — R, and coupling constant ¢ € R, imposing

asymptotic boundary conditions on the unbounded domain.
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s We consider the following time-dependent nonlinear

Sl Schrodinger equation for v : RY x [0,T] — C: (x,t) = w(x,t)

Thalhammer

iedy(x.1) = —Fe2Ay(x,0) + UX) y(x. ) + 0 [y(x.0)* y(x.0),
v(x,0) given, xeRY, 0<t<T,

with (small) parameter € > 0, real-valued external potential

U:RY — R, and coupling constant ¢ € R, imposing

asymptotic boundary conditions on the unbounded domain.

The above problem is related to the time-dependent

Gross—Pitaevskii equation which arises in the description of

the macroscopic wave function of a Bose—Einstein

condensate.
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Could we give a sense to the previous estimates ?
For small parameter values 0 < € << 1, the above
mentioned approach is not appropriate to provide optimal
local and global error bounds with respect to ¢; thus,
different techniques are needed for a better theoretical
understanding of the error behaviour of splitting methods for
nonlinear evolutionary problems...
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Could we give a sense to the previous estimates ?
For small parameter values 0 < € << 1, the above
mentioned approach is not appropriate to provide optimal
local and global error bounds with respect to ¢; thus,
different techniques are needed for a better theoretical
understanding of the error behaviour of splitting methods for
nonlinear evolutionary problems...

First idea : Taylor expansions...

C. Besse, B. Bidégaray et S. Descombes, Order estimates
in time of splitting methods for the nonlinear Schrédinger
equation, SIAM J. Numer. Anal., Vol. 40, No. 1, (2002), pp
26-40.
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m An exact local error representation

An exact local error
representation
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Theorem (Local error representation)
St
Descombes

"  For our nonlinear evolutionary problem the defect operator
Thalhammer

ZL(t,v) =ePrePey _ePasny

of the Lie splitting method . (t,v) = e'PrePsv possesses the
integral representation

t r7
Z(t,v) = /0 /o e"Pae®Pe [D, Dyl e(®~2IPs e(t-7)Dry q, d 1y

t ,T
_ /O /0 " 0260 (t— 11,7 (t1,V)) D2 (11 — T2, En(T1,V))

X [B,A] (5}3 (Tg,@@A(‘H ,V))) d’C2 dT1.
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Thalhammer

4 & (t,v) =F(&p(t,v)), 0<t<T,
ée(0,v) =v,

we determine the following time derivative

4 9(t,v) =B (@@B (t, Ea(t, v))> + 0268 (1, Ea(1,V)) A(SA(L,V))
=F(S(t,v)) + 0265 (t,Ea(t,v)) A(Ea(t,V)) —A(L(t,v)
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M. Consequently, we obtain the initial value problem

Thalhammer

%y(tvv) :F(y(t,v)) —|—R(t,V), 0<t<T,
Z(0,v)=v,

which involves the time-dependent remainder
R(t,v) = 02685 (t,6a(t,v)) A(Ea(t,V)) —A(L(t,V)), 0<t<T

and we apply now the nonlinear variation-of-constants
formula...
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Spliting Theorem (Grobner—Alekseev formula)

pescombes, IS analytical solutions of the following initial value
Thalhammer problems

v/(t) =H(t,v(t)) = G(v(t)) +R(t,v(t)), 0<t<T,v(0)=vo,

v'(t)=G(v(t)), 0<t<T,v(0)=vq

are related through the nonlinear variation-of-constants
formula

@@H (ta VO) = gG (t7V0)
t
+ /0 9266 (1— 1,64 (7, v0)) R (7, & (7,v0)) dt,

and this yields the formula.
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o We illustrate the local error behaviour when applied to the
s one-dimensional Gross—Pitaevskii equation under an initial

Sl condition in classical Wentzel-Kramers—Brillouin form :

Thalha;nmer
. 2
1 dw(x,t) = (— 1edu+1U(X) + 10 |y(x,0) ) w(x,1),
¥(x,0) =po(x) ei®®/e xeQ, 0<t<T,

for a function y: Q x [0,T] — C: (x,t) — w(x,t), where Q C R
denotes a (suitably chosen) bounded interval.

We assume the external real potential U: Q2 — R and the
functions pg, op : 2 — R defining the initial condition to be
sufficiently often differentiable with bounded derivatives.
Finally

U(x):%a)2x2, x€N,

for a positive weight o > 0.
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Gross-Pitaevskii
equation

Figure: Time evolution with ® = 1. Solution values |w(x, 1)|?,
(x,t) €[0,1.5] x [0,3], for (¢,) = (1,1) (top left),

(e,0) = (1072,1) (top right), (¢, ®) = (1,2) (bottom left), and
(e,) = (1072,2) (bottom right).
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The nonlinear Schrédinger equation may be cast into the
form of an abstract initial value problem with linear operator
A: D(A) Cc X — X and nonlinear operator B: D(B) c X — X
defined by

A=eA, A=1lidw, B=1B, Bv)=—-i(U+d|v})v.

o=



Operator
Splitting

s u=o,

Descombes ,
M.

EEREs  Numerical results indicate that, in the present example,

m For At/e in a certain range the local error of the Lie
splitting method is dominated by C; At3 /e,

m For At/e exceeding a certain value the local error
becomes unsatisfactorily large,

m For At=g¢, || L(g,w)||,. < C€2.

60:02
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Thalhammer Numerical results indicate that, in the present example,

m For At/e in a certain range the local error of the Lie
splitting method is dominated by C; At3 /e,

m For At/e exceeding a certain value the local error
becomes unsatisfactorily large,

m For At=g¢, || L(g,w)||,. < C€2.

60:02

|2 (At )| 2 < (Co+ CrAL+ CoAL + C3AT) A2,
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3
oo=0: | Z(Atw)|,.<P(A)AL, PE)=Y Cé¥,
j=0

Koo #0: L (atw)|.<Q(B) AL QE) =Y G,
=0
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m Splitting methods for Schrédinger equations
m Numerical analysis in several cases even in the
presence of critical parameters

m A first step in the explanation of "good" and "bad"
behaviours in numerical simulation.

Conclusions
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