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Motivations

Exponential growth of the size of the many-body basis with the
nucleon number and / or the number of valence levels
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Imaginary-Time Propagation
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OMC : Importance of the initial state
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OMC : Importance of the initial state
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Choice of the initial state

Variational method with projection on the symmetries before variation
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PHFY Results: Spectra
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Effective interaction: USD

H. Wildenthal, PPNP 11,5 (1984)
¢ P H F A. Brown, H. Wildenthal, ARNPS 38,29 (1988)

° ExaCt (J) or (J, T) Exact results from the code ANTOINE

E. Caurier et al., Acta Pol. 30,705 (1999)
E. Caurier et al., Rev. Mod. Phys. 77,2 (2005)




PHF Results: Moments

 Exact

Effective charges
en = 0.49¢ ; e, = 1.29¢

Effective g-factors
g = —3.875; g = 0.036
g5 =5.586 ; g, =1.030 T
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The Sign Problem




The Sign Problem
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If the centroids = and @& are merged, the _
contributions of the two populations
cancel each other out:

E[Njglq)” = 0.
All these useless trajectories just degrade

the signal-to-noise ratio because they only
contribute to the statistical error
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The Sign Problem
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The Sign Problem

| N=body Hilbert'Space

(Wy|(70)) = 0 mmp (Uy|e™ 01 |B(7)) =0
=) V7 > 7o, E[(Ty|®(7))] =0
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having exactly opposite contributions
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Selection with a trial state
\ .. . Constrained Path AFQMC
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From the Sign Problem to the Phase Problem
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Constrained Path AFQMC Phaseless A FOMC
Fixed-Node DMC, GFMC S. Zhang, H. Krakauer, PRL 90,1336401 (2003)




The Phaseless Approximation
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The Phaseless Approximation
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The PHF method provides a trial AND

an intial wavefunction for each spin

To obtain the “‘yrast ||~ ’\PT> — |\IJJM’>

spectroscopy’ of nuclei




OMC: First results
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« Calculations for fp-shell nuclei (not possible at the LPC);

 The pairing correlations are stochastically contained within the

Brownian motion of the walkers:
L Take them into account directly in the ansatz by
propagating Bogoliubov quasiparticle vacua.
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