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CEA/SPhN, Orme des Merisiers, build. 703, room 135, F-91191 Gif-sur-Yvette Cedex

I. PROBLEM SET SOLUTIONS

Many figures are included at the end of the file for a clearer presentation of results. Some of these files are created
automatically by NUSHELLX, such that a good test of your calculations is to reproduce, for example, Figures 2 and
3.

IMPORTANT ! ! ! Results below are not necessarily exact. Various “hidden” parameters such as the convergence
criteria and the number of states calculated by default change in different versions of NUSHELLX and can slightly
affect the results (in energies, on the keV level ; in other properties, usually at the level of a few %). All results given
below were obtained in April 2012. With the most recent version of the code (obtained from Alex Brown in May 2013),
the results are slightly different. For example, the B(GT) values of Problem Set 3, Question 1 are 0.359, 0.200, and
1.083 for the three lowest 1+ states. If your calculations are nearly but not identically equal, you have likely performed
the calculations correctly.

Problem Set 1

1. A = 24 nuclei
(a) No answer required
(b) See Figure 1. All assigned experimental states have a corresponding theoretical state within about twice the

rms deviation of 126 keV for the USDB interaction. The predicted Jπ value for the state at 4.886 MeV in
24Ne is 3+ (there are two theoretical states nearby in energy, and the 0+ has a corresponding experimental
state. This leaves the 3+ state at 4.81 MeV to connect to the experimental state). The two states at 5.636
MeV and 5.653 MeV should correspond to the theoretical 3+ and 4+ states at 5.43 Mev and 5.69 MeV,
respectively. Hoffman et al.

[
Phys. Rev. C 68, 034304 (2003)

]
have since assigned Jπ values for these three

experimental states, agreeing with the three assignments from comparison to the USDB interaction. The
experimental 4+ state is the 5.653 MeV state.

(c) The symmetry of the USDB interaction can be seen by comparing the Tz = ±2 level schemes of 24Ne and
24Si, especially in the .lpt files. The level schemes are identical in these nuclei. As the T = 0 nucleus, 24Mg
also has T = 0, 1 states that are not present in the other two nuclei and which enter at lower energy. The
first T = 2 state in 24Mg occurs at the same absolute energy as the ground states of 24Ne and 24Si (-71.725
MeV), but the ground state now has T = 0 with absolute energy -87.105 MeV. This places the first T = 2
state, which is the 12th0+ state in 24Mg, at an excitation energy of 15.38 MeV.

2. Mass of a nucleus
(a) The additional value required for this problem is the mass of 16O, since all energies in the sd shell are

calculated relative to the core. The ground state energy of 30Al with the USDB interaction, including the
Coulomb correction of 21.48 MeV, is -120.018 MeV. The experimental mass excess of -15872(14) keV can
be converted to a binding energy by the included formulas, with the result of 247.84(1) MeV. Subtracting
the 127.619 MeV binding energy of 16O, the value of 120.22(1) MeV can be compared directly to the output
in the al30b.lpt file. The USDB interaction is approximately 200 keV underbound. While this results in
reasonable agreement relative to the uncertainty in the interaction, the result can be improved by treating
the Coulomb interaction accurately in the reduced model space. This can be done by typing sdpn and
usdbcdpn in shell for the model space and interaction. The binding energy of 30Al is 120.314 MeV with this
“USDB plus charge dependence” interaction. Notice that even though the Coulomb interaction is repulsive,
we have gained 300 keV in binding energy by treating it accurately, with a final result within 95 keV of
experiment.

3. Spectroscopic factors
(a) In the independent particle model, with the NUSHELLX sum rule corresponding to a total strength of

2j + 1 for each orbit, we only need to determine how many protons and neutrons are occupied in 34S.
There are 16 protons and 18 neutrons, corresponding to 8 valence protons and 10 valence neutrons outside
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the 16O core. The 0d5/2 and 1s1/2 orbits are completely filled, while the 0d3/2 orbit is empty for protons
and half-filled for neutrons. Therefore, the nonzero C2S± for 34S are C2S−(πd5/2) = 6, C2S−(νd5/2) =

6, C2S−(πs1/2) = 2, C2S−(πs1/2) = 2, C2S+(πd3/2) = 1, C2S−(νd3/2) = 2, C2S+(νd3/2) = 0.5.

(b) The expected single particle configuration from the independent particle model has partition 6 for neutrons
(A) and partition 12 for protons (B), which accounts for 52.33% of the calculated wavefunction. The next
most likely configuration of protons is partition 3 with almost 10% of the wavefunction resulting from
an excitation of the pair of 1s1/2 protons into the 0d3/2 orbit. 78.73% of the wavefunction comes from
Jp = Jn = 0.

(c) No answer required
(d) The calculation is in better agreement with the more recent experiment from Khan et al. Note that spectro-

scopic factors are not experimental observables and depend on the reaction model used to extract them. It
is better to compare theoretical calculations to experimental observables (e.g. cross sections), but reaction
calculations are not straightforward within the shell model.

Results with the USDB interaction

Ex (MeV) J C2S

0 1
2

1.30

1.455 3
2

0.51

1.959 5
2

0.99

3.438 3
2

0.02

3.648 5
2

0.27

4.078 5
2

1.39

5.124 5
2

1.69

4. Electromagnetic transitions
(a) No answer required
(b) No answer required
(c) The results for the energies are in good agreement, at least up to 26Ne. There are much larger variations

for B(E2) values, but some of the states are reproduced well. There does not seem to be much correlation
between E(2+) and B(E2), contrary to what has been suggested by empirical formulas, e.g. see Phys. Rev.
C 66, 067303 (2002). The largest disagreement between theory and experiment occurs for 30Ne, and to a
lesser extent 28Ne, which are in and approaching the island of inversion region, respectively. The pf model
space orbits are essential to reproduce the low-lying states in these nuclei. Note also that effective charges
are employed in the calculation, but that the electric transition of 18Ne consisting only of two valence
protons is still not reproduced.

Results with the USDB interaction

ANe E(2+) (MeV) B(E2)(e2fm4)

18 1.998 36.3
20 1.747 60.1
22 1.363 59.9
24 2.111 49.6
26 2.063 49.9
28 1.623 44.0
30 1.708 33.2

Problem Set 2

1. Selection of model space and interaction (part 1)
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(a) By the NUSHELLX naming scheme as found in label.dat, the model space should be fp.sp, since the doubly
magic 40Ca can be treated as a good vacuum reference state. There are multiple options for the interaction
in this model space, but gx1 is one good choice reproducing data throughout the pf shell.

(b) The states expected to be observed in an experiment measuring 48Ti(d,t)47Ti depend on the experimental
details, but in general there are necessary truncations on excitation energy and spectroscopic factors. A
reasonable answer to this question might pick cuts for SFmin = 0.02 and Emax = 6 MeV. This choice would
result in nine measured states, including the lowest state of each possible spin (based on the chosen model
space).

(c) See Figure 2. Even though the calculated ground state spin of 47Ti does not agree with the experimental
value, the lowest calculated 5

2

− state is at 61 keV in excitation energy. Including the rms deviation of
the gx1 interaction, the 5

2

− and 7
2

− could equally be expected to represent the physical ground state.
The calculations suggest that the experimental state at 2.16 MeV, with unassigned spin, may actually be
composed of multiple states with smaller spectroscopic factors. Experimentally, the state is identified by
a peak in the observed events at a given energy, which then leads to an “experimental” SF of 0.12 based
on a single-state reaction model. Theoretically, there are five states within the rms deviation whose SF
add linearly to 0.09. To assess the spin and spectroscopic factors around 2.16 MeV, greater experimental
resolution is required.

Results with the gx1 interaction

Ex (MeV) J C2S

0.00 7
2

4.31

0.06 5
2

0.02

1.25 3
2

0.15

2.04 1
2

0.02

2.11 5
2

0.03

2.14 3
2

0.00

2.27 3
2

0.03

2.29 7
2

0.01

2.82 7
2

0.61

3.10 7
2

0.06

2. Selection of model space and interaction (part 2)

(a) In the standard harmonic oscillator plus spin-orbit mean field, 11Be would have a ground state spin of
1
2

− and a low-lying 3
2

− state. Calculations in the N = 1 oscillator shell (p-shell) would be expected to
reproduce the behavior of this nucleus, since it lies between 4He and 16O.

(b) To calculate positive and negative parity states, both the N = 1 and N = 2 shells are needed. This
corresponds to the psd.sp model space in NUSHELLX. It is also possible to include all orbits up through
the N = 3 oscillator shell using the spsdpf.sp model space.

(c) With both the psdmk and psdmwk interaction in the psd model space, the ground state spin of 11Be is 1
2

+.
The calculated energy difference between the Jπ = 1

2

± states is 4.34 MeV with the psdmwk interaction
and 4.88 MeV with the psdmk interaction. The agreement with experimental data is very poor for both
interactions. We could argue that psdmwk is better since the 3

2

− state is at least reasonably reproduced
in this case, but since both are 4 MeV off on the 1

2

− state, we should not place too much trust in either
interaction. See Figure 3 for the results with the psdmwk interaction.

3. Conceptual : The results thus far were selected to show that results calculated in the shell model are not
necessary reliable, especially for very exotic nuclei. We can observe from the neon results and beryllium results
that, as a function of the asymmetry, we should be wary of calculations where N/Z ≈ 2. While showing instances
where the shell model fails was important for our purposes, we should emphasize that the shell model does quite
well throughout standard model spaces for a variety of properties.
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Problem Set 3

1. Gamow-Teller transitions
(a) The transitions from the 0+ ground state in 28Si can populate 0+ and 1+ states in 28P. The energies are

very well produced- only the theoretical 1+5 state does not correspond within the approximate uncertainty
to a measured experimental state. In the *.bgt file, we can see that this state has a very small B(GT)
value (although it is larger than that of the eighth and tenth 1+ states). The B(GT) values are typically
much larger than the experimental values, especially for the low-lying states where we observe double the
strength theoretically.

Results with the USDB interaction

Ex (MeV) B(GT )

1.20 0.356

1.50 0.200

2.07 1.077

3.00 0.466

3.59 0.052

3.90 0.208

4.85 0.878

5.17 0.015

5.80 0.386

6.01 0.000

(b) From Lecture IV, beta decay values can be determined from the equation

ftk,k
′

1/2 =
C

Bk,k′(F±) + (gA/gV )2Bk,k′(GT±)
,

where Fermi decay does not contribute for 1+ states in 28P. There is a program in NUSHELLX that can
be run to produce logft values, which we did not cover in the lectures. It can be run by typing betadecay
x <enter> in Windows with an input file x.beq (an example can be found in the beta folder in the app
directory). For most calculations of interest, there is already a way to calculate it in NUSHELLX, even if
there is no documentation. Feel free to ask for help based on your calculation of interest.

2. Approximations
(a) See Figure 4 for reference during parts (a)-(c) of this question. In the sd model space, we would expect

to reproduce the low-lying positive parity states, so at least the ground state and first excited state at 50
keV. Depending on the trust placed in assigning levels, you might also consider the experimental states at
0.67, 0.94, 2.24, 3.76, and 3.81 MeV as positive parity.

(b) The ground state is 3
2

+ , but the first 1
2

+ state is above 2 MeV with the USDB interaction, so the nearly
degenerate experimental levels are not reproduced. The rest of the level scheme is poorly reproduced as
well. For example, there are eight experimental excited states before the first excited level with USDB,
although only the positive parity states can be reproduced in the sd model space.

(c) The agreement with respect to experiment has improved with this new interaction which I will call usdbed,
as the 1

2

+ and 3
2

+ doublet is now reproduced. The experimental level density below 1.5 MeV is still
much greater than the theoretical one. The modification of the interaction, in this case the one-body
component, means that the interaction is no longer designed to reproduce the entire sd shell. While we
may have improved the results for one nucleus of interest, there are many parameters that can be adjusted
to reproduce the low-lying states in one nucleus. If we now look at calculations throughout the sd shell,
this new interaction is not necessarily appropriate as we no longer understand how the values are being
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constrained. For example, a calculation of 33P with the usdbed interaction as shown in Figure 5 does not
reproduce the ground state or level scheme, while the standard USDB interaction does quite well.

(d) The binding energy of the experimental state at 50 keV excitation energy is 243.99 MeV, in comparison to
the USDB calculation of 243.36 MeV including the 16O vacuum energy and the Coulomb correction. The
experimental 3/2+ state at 50 keV does not seem to correspond to the calculated ground state with the
USDB interaction, but the experimental state at 673 keV has a binding energy of 243.32 MeV, in good
agreement. This motivated the assignment of Jπ = 3

2

+ for the 673 keV state by Miller et al.
(e) Even including a larger model space that enables the calculation of negative parity states in the calculation,

the experimental data is not reproduced well. The 1
2

+ state is still too high in energy, and the high level
density at low excitation energy is not reproduced. We should recall the problems away from stability,
especially in the island of inversion region, observed already.

3. Decays and the dripline
(a) The agreement with experimental data is excellent for the USDB interaction, even beyond the neutron

dripline (N = 16) and for unbound states. See Figure 6 for compiled results.
(b) For 20,21,22O, the ground state decays by beta decay and the excited states gamma decay to the ground

state. For 23O, the ground state decays by beta decay but the excited 5
2

+ and 3
2

+ states are higher in
energy than the 22O ground state, and therefore decay by neutron emission. Similarly, the ground state
of 24O beta decays while the excited 2+ state neutron decays. The ground state of 25O is unbound and
decays by neutron emission. The ground state of 26O is bound to one-neutron emission, but unbound to
two-neutron emission and decays to the ground state of 24O. The ground states of 27,28O are both unbound
to emissions involving neutrons, and decay to 24O either directly or through 26O.

(c) If three-body forces are needed to reproduce the behavior of oxygen isotopes near the dripline, then the
USDB interaction must account for three-body forces in some way. While it only consists of one-body
(SPE) and two-body (TBME) components, the three-body force can be decomposed into an effective one-
body, effective two-body, and explicit three-body term. The explicit three-body term is small relative to
the others, and so the empirical fitting procedure to energy data in the sd shell reproduces the effective
behavior of three-body forces. For comparison, a microscopic procedure starting from the NN interaction
can produce an effective sd shell interaction (as in Problem Set 4 and Lectures V-VII) which has no three-
body component, and the difference can be related to three-body forces (relative to the uncertainty in the
renormalization group methods and many-body perturbation theory).

Problem Set 4

1. Application to standard model space
(a) No answer required. For reference, I will denote the derived effective interaction with 16O as the target by

o16 and that with 28Si as the target by si28.
(b) The two interactions are relatively similar to each other, typically, the TBME of si28 are weaker by about

10%. The difference between the two interactions is due to whether the 0d5/2 orbit is occupied or not, which
affects the evaluation of, for example, the core-polarization diagram at second order in perturbation theory.
A much smaller effect is due to the mass dependence of the harmonic oscillator basis which is employed in
the procedure.

(c) The appropriate matrix elements for comparison are the neutron-neutron TBME, since the USDB in-
teraction does not include the Coulomb interaction, which is significant for protons. Comparing the
USDB values to those of the two derived interactions, we see that many TBME are in good agree-
ment, e.g. 〈0d5/20d5/2|Vms|0d5/20d5/2〉J=0 = −2.64(−2.52)[−2.55] for o16 (si28) [USDB]. However, there
are many TBME where the USDB values are drastically different, e.g. 〈0d3/20d3/2|Vms|0d3/20d3/2〉J=0 =
−0.76(−1.11)[−1.90] for o16 (si28) [USDB] and all the J = 3 TBME.

(d) The level density is higher with the o16 and si28 interactions, even though the yrast states are still re-
produced relatively well. The results for the o16 interaction are shown in Fig. 7 for comparison to Fig.
1.

(e) The empirical interaction performs much better than the produced effective interactions. Since the empiri-
cal interaction is parameterized and fit to energy data throughout the sd shell, interactions determined in a
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microscopic way will always fare worse in comparison to experiment, at least within the range of data inclu-
ded in the fitting procedure. While a microscopic procedure is desired and leads to a better understanding
of the contributions to the effective interaction (e.g., how much core polarization contributes to specific
TBME), there are practical limitations to this procedure. Most importantly, three-body forces (and higher)
are excluded from the start, as a microscopic nucleon-nucleon potential is used as input. Furthermore, res-
trictions on the order of perturbation theory and number of excitations, given in ~ω, limit the accuracy
of the effective interaction in the reduced model space. However, one benefit of the microscopic effective
interactions is that isospin symmetry is broken from the Coulomb, CIB, and CSB interactions from the
nucleon-nucleon interaction, so the level schemes of 24Si and 24Ne are not identical, like experiment.

2. Application to exotic isotopes
(a) An appropriate model space requires the sd proton orbits and at least some, if not all, of the sd and pf

neutron orbits. The closest neutron orbits to the Fermi energy are 0d3/2, 0f7/2, 1s1/2, 1p3/2.
(b) No answer required
(c) The results for 30Ne with this new interaction (I will refer to it as si34hf) have improved significantly

relative to USDB. The B(E2) transition is 65.0 e2fm4, in comparison to the experimental value of 92.0
e2fm4. The energy is still about 1 MeV too high, like the USDB calculation, but the included pf orbits seem
to include necessary wavefunction information. For 31Mg, the si34hf interaction now produces positive and
negative parity states, but the low-energy level density is still too small and the 1

2

+ state is still much too
high in energy, but the improvement over both empirical interactions is clear.

(d) Optional question for future investigation : Going to 6 ~ω excitations reduces the 2+ energy in 30Ne
by 100 keV and increases the B(E2) value to 70.3 e2fm4. Increasing the number of excitations produces
a stronger interaction, like increasing the order of perturbation theory (see Lecture VII). Employing 8-10
~ω excitations and third order of perturbation theory represents the cutting edge of nuclear structure
calculations, but also requires significant computing power to achieve the result. Even in this case, the
agreement with experiment may not be satisfactory (I haven’t computed the result), but it is a significant
improvement on the USDB result. The inclusion of three-body forces and the improvement of the one-body
SPE component are necessary to reproduce experimental data consistently.
The effect on the calculations with a different model space depends on the specific choice of model space.
If the agreement with experiment is worse, perhaps the model space is too restrictive or the effective
interaction was not determined properly (recall discussion from Lecture VII about divergences in large
model spaces). In terms of the calculation, there is always a tradeoff between inclusion of degrees of
freedom and the amount of CPU time required. In general, a larger model space will require more time
to calculate these nuclei but will also include more degrees of freedom which may be of interest to the
problem ; for instance, in this problem, the 0d5/2 and 1p1/2 neutron orbits might contribute significantly
to the calculated results.

Problem Set 5

1. Here we will compare the monopoles of a phenomenological model and those of a microscopic interaction to
gauge the character of physics missing from our theory.
(a) From the USDB phenomenological interaction, the T = 1 monopoles in MeV are

d5/2d5/2 -0.628
d5/2d3/2 -0.268
d5/2s1/2 0.007
d3/2d3/2 -0.398
d3/2s1/2 0.004
s1/2s1/2 -1.691

(b) Checking against the next part will ensure this was done correctly
(c) Results may vary slightly depending on the interaction chosen, but the values for a low-momentum inter-

action beginning from the standard chiral N3LO interaction to 2nd order in MBPT are :
d5/2d5/2 -0.585
d5/2d3/2 -0.661
d5/2s1/2 -0.416
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d3/2d3/2 -0.136
d3/2s1/2 -0.039
s1/2s1/2 -2.430
We see that generally for monopoles involving lower-lying orbitals (i.e., d5/2 and s1/2), the microscopic
monopoles are more attractive than those given from phenomenology. Therefore we expect that additional
repulsion will be needed in order to improve the predictions of the microscopic theory.

2. No answer required, just following the instructions. This will allow us to calculate a simple density-dependent
three-nucleon interaction. If done correctly it’s our hope that this correction will provide in part some of the
missing physics needed to improve our theory (i.e. agreement with data).

3. Again, no answer required. Checking against the figure will ensure the steps were followed correctly. First of all
we should notice that all partial waves vanish beyond S-waves (i.e., only 1S0 and 3S1 channels have nonzero
matrix elements). This would be expected since the contact interaction is spherically symmetric and all other
partial waves are not. Comparing with Figure 8 we should confirm that these results agree with line 6, which
denotes the contact 3N interaction.

4. The monopoles from this 3N contact interaction are
d5/2d5/2 0.547
d5/2d3/2 0.106
d5/2s1/2 0.197
d3/2d3/2 0.841
d3/2s1/2 0.197
s1/2s1/2 1.395
As expected, these are uniformly positive, so, if not too large, should bring our microscopic monopoles much
closer to the phenomenological values. However, if we compare with the difference between the USDB monopoles
and those of the low-momentum interaction :
d5/2d5/2 -0.043
d5/2d3/2 0.375
d5/2s1/2 0.423
d3/2d3/2 -0.262
d3/2s1/2 0.043
s1/2s1/2 0.739
Ignoring the high-lying monopoles, we see that the current 3N contact interaction gives too much repulsion
by more than a factor of two. The parameters of the EN contact interaction can be modified to optimize the
agreement with experiment (i.e. to reproduce the USDB values approximately).
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 24Ne   24Mg   24Si
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 2+

 4+

 0+

 2+

 4+

 0+

 2+

 4+

0


1


2


3


4


5


6


E
 (

M
e
V

)

 

experiment

 24Ne  24Mg  24Si
 0+

 2+

 4+

 0+

 2+

 4+

 0+

 2+

Figure 1. Comparison of the level schemes for experiment (left) and for the USDB interaction (right) for the A = 24 nuclei
of interest in this problem. For this and similar plots below, the length of the line corresponds to the angular momentum of
the state, with a label each time a highest J value occurs, starting from the ground state. Therefore, the ground state spin is
always labeled. Experimental states are taken from the ENSDF database unless otherwise cited. States in the ENSDF database
without an assigned Jπ value are plotted as black dots at the appropriate energies. The level schemes are displayed up to 6
MeV, although the theoretical level scheme includes a finite number of states for a given Jπ value (ten unless otherwise noted).
As a result, nuclei with a high density of states might not show the full theoretical level scheme through 6 MeV.
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 47Ti gx1

 7/2−0
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 47Ti (Z= 22) (N= 25)
 5/2−

 7/2−

 9/2−

11/2−

15/2−

17/2−

19/2−

21/2−

Figure 2. The level schemes for 47Ti for experiment (left) and with the gx1 interaction in the pf model space (right). Note
that only states up to J = 7

2
are calculated, as demanded in the problem set. See also the caption to Fig. 1.
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 11Be psdmwk
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 11Be (Z=  4) (N=  7)
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Figure 3. The level schemes for 11Be for experiment (left) and with the psdmwk interaction in the psd model space (right).
Note that only states up to J = 3

2
are calculated, as demanded in the problem set. See also the caption to Fig. 1.
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 31Mg

usdb usdbed
 3/2+

 5/2+

 7/2+

 1/2+
 3/2+
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 31Mg (Z= 12) (N= 19)
 1/2+

 3/2+

 7/2−

 11/2−

Figure 4. Level schemes for 31Mg for experiment (left) and theory (right). On the left, I have assigned Jπ values using weak
selection rules from ENSDF. On the right, results are shown with both the USDB interaction and a modified interaction with
different SPE components (usdbed). See also the caption to Fig. 1.
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 33P usdbed
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Figure 5. Level schemes for 33P for experiment (left) and with the usdbed interaction (right). Even though the results for
31Mg were significantly improved with this new interaction, the change in SPE affects the results throughout the sd shell. See
also caption to Fig. 1.
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Figure 6. Comparison of USDB results to available experimental data in the neutron-rich oxygen isotopes. Figure courtesy of
Alex Brown.
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Figure 7. Comparison of the level schemes for experiment (left) and for the o16 interaction (right) for the A = 24 nuclei of
interest in this problem. See also caption to Fig. 1.
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Figure 8. Plot of partial wave matrix elements of various density-dependent 3N contributions.


