
Derivation of effective interactions

Angelo Signoracci

CEA/Saclay

Lecture 7, 15 May 2013



Generalities Empirical interactions Non-empirical interactions

Outline

1 Generalities

2 Empirical interactions

3 Non-empirical interactions

A. Signoracci Derivation of effective interactions



Generalities Empirical interactions Non-empirical interactions

Outline

1 Generalities

2 Empirical interactions

3 Non-empirical interactions

A. Signoracci Derivation of effective interactions



Generalities Empirical interactions Non-empirical interactions

Brief Review

Microscopic bare interactions (NN and NNN) have been derived and fit to data

Separation into components depends on renormalization scheme

Bare interactions reproduce NN scattering data up to 300-350 MeV

Not constrained by theory or experiment for higher energies

For purpose of these tutorials, assume accurate bare interactions

In reduced model space, require an effective interaction
Must incorporate effects from outside the model space
Components: one-body (SPE) and two-body (TBME)
Explicit three-body excluded due to computational difficulties
Inclusion of effects at one- and two-body level?

For historical effective interactions
Calculations deteriorate with increasing number of valence particles
Claimed that microscopic effective interactions are not practical

Today, effective two-body component of three-body forces improves results

Empirical correction to monopole terms provides satisfactory results

Phenomenologically adusted effective interactions typically used for calculations

Does not make general CI theory phenomenological!

RG methods and MBPT provide prescriptions to construct effective interactions

A. Signoracci Derivation of effective interactions
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Parameterization of interaction: Two main schemes

1 Unconstrained parameterization
Interaction completely unknown
Treat all SPE and TBME as parameters
66 (199) parameters in sd (pf ) shell
Parameters become correlated through fit to data
Complicated fitting procedure required (singular value decomposition)

2 Constrained parameterization
Select fewer parameters to vary
For instance, only treat monopoles as free parameters

6 (10) parameters in sd (pf ) shell
Standard fitting procedures sufficient

Another popular procedure: fix (not fit) to experimental data
Fix one-body terms (SPE) to core + one nucleon
Fix two-body terms (TBME) to core + two nucleons

A. Signoracci Derivation of effective interactions
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Example: 17O and 18O data

For the sd shell, outside of the doubly magic 16O core
Use data from 17O and 18O to determine effective interaction for neutrons

E(17O; 5/2+)− E(16O; g .s.) = −4.14MeV ≡ ε(0d5/2)(SPE)

E(17O; 1/2+)− E(16O; g .s.) = −3.27MeV ≡ ε(1s1/2)(SPE)

E(17O; 3/2+)− E(16O; g .s.) = 0.94MeV ≡ ε(0d3/2)(SPE)

E(18O; g .s.)− E(16O; g .s.) = −12.19MeV

≡ 2ε(0d5/2) + 〈(0d5/20d5/2)J=0|Vms |(0d5/20d5/2)J=0〉

...

Can obtain most important TBME in this way

〈(0d5/20d5/2)J=0|Vms |(0d5/20d5/2)J=0〉 = −3.91MeV (TBME)

For the remainder, G-matrix result typically used
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Fitting procedure

1 Select model space of interest

2 Select free parameters to fit (constrained vs. unconstrained)

3 Select experimental data within model space for fit (typically, energy levels)

4 Initialize parameters with “microscopic” input, i.e. from RG + MBPT methods

5 Iterate by minimizing deviation with respect to data
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Example: USDA and USDB interactions

Empirical universal sd (USD) interaction created around 1980

As experimental capabilities extended further from stability
Reached nuclei beyond those included in the fit
Large disagreements for exotic nuclei
Predictive power lost in fitting procedure
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Example: USDA and USDB interactions

Empirical universal sd (USD) interaction created around 1980

As experimental capabilities extended further from stability

BEexp(Z ,N)− BEth(Z ,N)

New interactions needed within sd shell!
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Example: USDA and USDB interactions

Brown and Richter undertook this taska

608 energy levels in sd shell with uncertainty σ ≤ 200 keV compiled

Procedure:

H(n = 0) = SPE(exp) + TBME(G-matrix)

≡ Pi (n = 0)

i = 1− 3 Pi (n) = SPE(n)

i = 4− 66 Pi (n) =
18

A

0.3

TBME(n)

{Ek(n)} =〈Ψk |H(n)|Ψk〉 SVD
⇒ Pi (n + 1)

Iteration number n increased until convergence

Mass-dependence due to G-matrix formalism, but phenomenological

aB.A. Brown and W. Richter, Phys. Rev. C 74, 034315 (2006)
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Example: USDA and USDB interactions

Brown and Richter undertook this taska

608 energy levels in sd shell with uncertainty σ ≤ 200 keV compiled

USDA (USDB) found from 30 (56) linear combinations of correlated parameters

Two interactions provide a way to estimate theoretical errors

USDA
More conservative
Smaller rms deviation from input G-matrix values
170 keV rms deviation to experimental data (global rms)

USDB
More accurate
Also determined by plateau in deviation as function of linear parameters varied
126 keV global rms deviation

aB.A. Brown and W. Richter, Phys. Rev. C 74, 034315 (2006)
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Example: USDA and USDB interactions

Brown and Richter undertook this taska

608 energy levels in sd shell with uncertainty σ ≤ 200 keV compiled
BEexp(Z ,N)− BEth(Z ,N)

Two interactions created based on plateau in rms deviations

USDA more conservative (closer to G-matrix)

USDB more accurate (smaller deviation to experimental data)

aB.A. Brown and W. Richter, Phys. Rev. C 74, 034315 (2006)
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Example: USDA and USDB interactions

Brown and Richter undertook this taska

608 energy levels in sd shell with uncertainty σ ≤ 200 keV compiled
BEexp(Z ,N)− BEth(Z ,N)
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Improvement relative to USD interaction

Still underbound for some exotic nuclei → island of inversion region (see lecture 1)

aB.A. Brown and W. Richter, Phys. Rev. C 74, 034315 (2006)
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Motivation

Empirical interactions are only predictive within fitting data

Continually improve by refitting as new energy levels are observed

Lengthy, difficult procedure to determine effective interactions
Requires compilation of hundreds of data
Iterative procedure is prohibitive for larger model spaces
Each model space requires this procedure

Microscopic procedures not tuned

Assuming sufficient data, cannot improve upon empirical parameterization

Improvements
1 Less time-consuming procedure to determine effective interactions
2 No limitations on model space (number of parameters vs. data points)
3 Theoretical error given by aspects excluded from RG+MBPT
4 Method for explicitly determining three-body contribution
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Review

Main topics already presented in prior two lectures (J. Holt)
1 Select microscopic bare interactions which reproduce scattering data
2 Soften using renormalization group methods (G-matrix, vlowk , SRG, etc.)
3 Define P and Q operators (select reduced model space and basis truncation)
4 Employ many-body perturbation theory to determine two-body matrix elements
5 Determine single particle energies (HF, Dyson’s equation, empirically, etc.)

NUSHELLX executable ”ham” produces effective interactions

Practical aspects of calculations must be discussed
Selection of basis for MBPT
Convergence (order of perturbation theory, ~ω excitations, etc.)
Divergences due to small energy denominators and large model spaces
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Behavior of exotic nuclei

Renormalization is basis-dependent (HO typical for nuclear structure applications)

Magic numbers evolve away from stability
Suggests evolution of single particle shell structure
Not reproduced by standard HO potential in nuclear physics

For exotic nuclei, valence orbits are often loosely bound

Well-known problem
Loosely bound orbits extend farther in space
Huge basis required to reproduce behavior with HO wavefunctions
Realistic basis preferred for reasonable truncation needed computationally

Typical realistic bases
1 Woods-Saxon basis
2 Skyrme Hartree-Fock (SHF) basis
3 Gamow basis
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Example: pf neutron orbits

Compare bases for pf valence space for stable 40Ca and exotic 34Si isotopes

Both nuclei have N = 20 (same neutron occupation, same neutron valence orbits)

HO basis energies fixed to reproduce SHF value for valence orbits (bold)

n`j
34Si 34Si 40Ca 40Ca
HO SHF HO SHF

0s1/2 -34.59 -32.79 -39.21 -38.18
0p3/2 -23.09 -23.10 -28.19 -29.70
0p1/2 -23.09 -21.74 -28.19 -26.67
0d5/2 -11.58 -13.07 -17.17 -20.20
0d3/2 -11.58 -9.03 -17.17 -14.65
1s1/2 -11.58 -10.04 -17.17 -15.75
0f7/2 -0.07 -2.62 -6.15 -9.89
0f5/2 -0.07 3.33 -6.15 -2.43
1p3/2 -0.07 -0.40 -6.15 -5.48
1p1/2 -0.07 -0.27 -6.15 -3.66
0g9/2 11.44 9.22 4.87 1.15
0g7/2 11.44 18.23 4.87 10.28
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Example: pf neutron orbits

Compare bases for pf valence space for stable 40Ca and exotic 34Si isotopes

Both nuclei have N = 20

Focus on model space orbits
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Example: pf neutron orbits

Compare bases for pf valence space for stable 40Ca and exotic 34Si isotopes

Both nuclei have N = 20

Focus on model space orbits
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Convergence

Many-body perturbation theory derived up to third order

TBME in sd shell including 6~ω excitations in SHF basis
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Second order

Results with HO basis do not converge at third ordera

Better convergence expected with realistic basis, but not achieved at third order

aM. Hjorth-Jensen et al., Phys. Lett. B 248, 243 (1990)
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Convergence

Computational limit (typical laptop/desktop): 10~ω in sd shell

TBME in sd shell renormalized to second order in SHF basis
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Convergence

Lack of convergence as a function of excitations and order of perturbation theory

More attractive interaction for higher excitations and order of perturbation theory

Must be aware of possible dependence
Few percent from 4~ω to 6~ω excitations
∼ 20% for third order in sd shell example

Evaluate error bars by various renormalization procedures?

Less dependence for low-energy states in even-even nuclei
Statement not proven in these lectures
Effect on pairing matrix elements (J = 0) reduced relative to effect of basis

Be consistent and honest in procedure
NUSHELLX ’ham’ executable uses second order and 6 ~ω by default
Best to evaluate dependence if possible
At least, state explicitly parameters used
Realize calculations are dependent on RG+MBPT scheme

A. Signoracci Derivation of effective interactions



Generalities Empirical interactions Non-empirical interactions

Divergences

Small or null energy denominators result in infinite matrix elements in MBPT

Very common (almost automatic) with any basis

Primary way to avoid
Introduce constant valence energy for all model space orbits
Provide starting energy (typically twice the valence energy)
In energy denominators of two-body diagrams

Use starting energy ±δε in place of valence orbit energy

In model spaces comprised of orbits from multiple oscillator shells
Intruder states enter MBPT renormalization
Requires calculation of Q-box to higher order to resolve divergences
In practice: artificially place all model space orbits in same oscillator shell
Current area of research in nuclear structure theory

Divergences
More common with third order of MBPT
More common with realistic SHF basis
Primarily occur when evaluating Q-box (derivative contributions)

Can avoid divergences by selection of options in ham
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Implementation

Simplest procedure to create interactions
1 In NUSHELLX, run executable ’ham’
2 Select model space in proton-neutron formalism (i.e., sdpn in sps folder, not sd)
3 Select target nucleus with closed subshell single particle structure

Remaining parameters have default values printed out in *.inf file
Modify as desired
Copy *.inf file to ham.ini
Rerun ham to include updated parameters

RG calculation performed by ham only if output file *.reint is nonexistent

If parameters of RG procedure are modified (e.g. change in cutoff Λ)
Must enforce new RG calculation
Create new directory and copy ham.ini to the new directory

More advanced options can be modified by hand

See comment lines in bhf.ini and renorm.ini
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