Derivation of effective interactions

Angelo Signoracci

 $\mathsf{CEA}/\mathsf{Saclay}$

Lecture 7, 15 May 2013

◆□▶ ◆圖▶ ★필▶ ★필▶ - 필

ヨト イヨト

Э

2 Empirical interactions

2 Empirical interactions

문 ▶ (문 ▶

э

- Microscopic bare interactions (NN and NNN) have been derived and fit to data
- Separation into components depends on renormalization scheme
- \bullet Bare interactions reproduce NN scattering data up to 300-350 MeV
- Not constrained by theory or experiment for higher energies
- For purpose of these tutorials, assume accurate bare interactions
- In reduced model space, require an effective interaction
 - Must incorporate effects from outside the model space
 - Components: one-body (SPE) and two-body (TBME)
 - Explicit three-body excluded due to computational difficulties
 - Inclusion of effects at one- and two-body level?
- For historical effective interactions
 - Calculations deteriorate with increasing number of valence particles
 - Claimed that microscopic effective interactions are not practical
- Today, effective two-body component of three-body forces improves results
- Empirical correction to monopole terms provides satisfactory results
- Phenomenologically adusted effective interactions typically used for calculations
- Does not make general CI theory phenomenological!
- RG methods and MBPT provide prescriptions to construct effective interactions

- Microscopic bare interactions (NN and NNN) have been derived and fit to data
- Separation into components depends on renormalization scheme
- \bullet Bare interactions reproduce NN scattering data up to 300-350 MeV
- Not constrained by theory or experiment for higher energies
- For purpose of these tutorials, assume accurate bare interactions
- In reduced model space, require an effective interaction
 - Must incorporate effects from outside the model space
 - Components: one-body (SPE) and two-body (TBME)
 - Explicit three-body excluded due to computational difficulties
 - Inclusion of effects at one- and two-body level?
- For historical effective interactions
 - Calculations deteriorate with increasing number of valence particles
 - Claimed that microscopic effective interactions are not practical
- Today, effective two-body component of three-body forces improves results
- Empirical correction to monopole terms provides satisfactory results
- Phenomenologically adusted effective interactions typically used for calculations
- Does not make general CI theory phenomenological!
- RG methods and MBPT provide prescriptions to construct effective interactions

- Microscopic bare interactions (NN and NNN) have been derived and fit to data
- Separation into components depends on renormalization scheme
- \bullet Bare interactions reproduce NN scattering data up to 300-350 MeV
- Not constrained by theory or experiment for higher energies
- For purpose of these tutorials, assume accurate bare interactions
- In reduced model space, require an effective interaction
 - Must incorporate effects from outside the model space
 - Components: one-body (SPE) and two-body (TBME)
 - Explicit three-body excluded due to computational difficulties
 - Inclusion of effects at one- and two-body level?
- For historical effective interactions
 - Calculations deteriorate with increasing number of valence particles
 - Claimed that microscopic effective interactions are not practical
- Today, effective two-body component of three-body forces improves results
- Empirical correction to monopole terms provides satisfactory results
- Phenomenologically adusted effective interactions typically used for calculations
- Does not make general CI theory phenomenological!
- RG methods and MBPT provide prescriptions to construct effective interactions

- Microscopic bare interactions (NN and NNN) have been derived and fit to data
- Separation into components depends on renormalization scheme
- \bullet Bare interactions reproduce NN scattering data up to 300-350 MeV
- Not constrained by theory or experiment for higher energies
- For purpose of these tutorials, assume accurate bare interactions
- In reduced model space, require an effective interaction
 - Must incorporate effects from outside the model space
 - Components: one-body (SPE) and two-body (TBME)
 - Explicit three-body excluded due to computational difficulties
 - Inclusion of effects at one- and two-body level?
- For historical effective interactions
 - Calculations deteriorate with increasing number of valence particles
 - Claimed that microscopic effective interactions are not practical
- Today, effective two-body component of three-body forces improves results
- Empirical correction to monopole terms provides satisfactory results
- Phenomenologically adusted effective interactions typically used for calculations
- Does not make general CI theory phenomenological!
- RG methods and MBPT provide prescriptions to construct effective interactions

- Microscopic bare interactions (NN and NNN) have been derived and fit to data
- Separation into components depends on renormalization scheme
- \bullet Bare interactions reproduce NN scattering data up to 300-350 MeV
- Not constrained by theory or experiment for higher energies
- For purpose of these tutorials, assume accurate bare interactions
- In reduced model space, require an effective interaction
 - Must incorporate effects from outside the model space
 - Components: one-body (SPE) and two-body (TBME)
 - Explicit three-body excluded due to computational difficulties
 - Inclusion of effects at one- and two-body level?
- For historical effective interactions
 - Calculations deteriorate with increasing number of valence particles
 - Claimed that microscopic effective interactions are not practical
- Today, effective two-body component of three-body forces improves results
- Empirical correction to monopole terms provides satisfactory results
- Phenomenologically adusted effective interactions typically used for calculations
- Does not make general CI theory phenomenological!
- RG methods and MBPT provide prescriptions to construct effective interactions

- Microscopic bare interactions (NN and NNN) have been derived and fit to data
- Separation into components depends on renormalization scheme
- \bullet Bare interactions reproduce NN scattering data up to 300-350 MeV
- Not constrained by theory or experiment for higher energies
- For purpose of these tutorials, assume accurate bare interactions
- In reduced model space, require an effective interaction
 - Must incorporate effects from outside the model space
 - Components: one-body (SPE) and two-body (TBME)
 - Explicit three-body excluded due to computational difficulties
 - Inclusion of effects at one- and two-body level?
- For historical effective interactions
 - Calculations deteriorate with increasing number of valence particles
 - Claimed that microscopic effective interactions are not practical
- Today, effective two-body component of three-body forces improves results
- Empirical correction to monopole terms provides satisfactory results
- Phenomenologically adusted effective interactions typically used for calculations
- Does not make general CI theory phenomenological!
- RG methods and MBPT provide prescriptions to construct effective interactions

- ∢ ≣ ▶

э

2 Empirical interactions

3 Non-empirical interactions

Parameterization of interaction: Two main schemes

Unconstrained parameterization

- Interaction completely unknown
- Treat all SPE and TBME as parameters
- 66 (199) parameters in sd (pf) shell
- Parameters become correlated through fit to data
- Complicated fitting procedure required (singular value decomposition)

Constrained parameterization

- Select fewer parameters to vary
- For instance, only treat monopoles as free parameters
 - 6 (10) parameters in sd (pf) shell
 - Standard fitting procedures sufficient
- Another popular procedure: fix (not fit) to experimental data
 - Fix one-body terms (SPE) to core + one nucleon
 - Fix two-body terms (TBME) to core + two nucleons

< ∃ >

Example: ¹⁷O and ¹⁸O data

- For the *sd* shell, outside of the doubly magic 16 O core
 - $\bullet\,$ Use data from ^{17}O and ^{18}O to determine effective interaction for neutrons

$$\begin{split} & E({}^{17}O;5/2^+) - E({}^{16}O;g.s.) = -4.14 MeV \equiv \epsilon(0d_{5/2})(\text{SPE}) \\ & E({}^{17}O;1/2^+) - E({}^{16}O;g.s.) = -3.27 MeV \equiv \epsilon(1s_{1/2})(\text{SPE}) \\ & E({}^{17}O;3/2^+) - E({}^{16}O;g.s.) = 0.94 MeV \equiv \epsilon(0d_{3/2})(\text{SPE}) \\ & E({}^{18}O;g.s.) - E({}^{16}O;g.s.) = -12.19 MeV \\ & \equiv 2\epsilon(0d_{5/2}) + \langle (0d_{5/2}0d_{5/2})_{J=0} |V_{ms}|(0d_{5/2}0d_{5/2})_{J=0} \rangle \end{split}$$

• Can obtain most important TBME in this way

$$\langle (0d_{5/2}0d_{5/2})_{J=0}|V_{ms}|(0d_{5/2}0d_{5/2})_{J=0}\rangle = -3.91 MeV \text{ (TBME)}$$

• For the remainder, G-matrix result typically used

Fitting procedure

- Select model space of interest
- Select free parameters to fit (constrained vs. unconstrained)
- Select experimental data within model space for fit (typically, energy levels)
- Initialize parameters with "microscopic" input, i.e. from RG + MBPT methods
- Iterate by minimizing deviation with respect to data

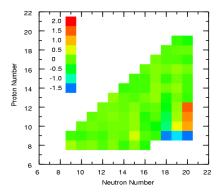
Example: USDA and USDB interactions

- Empirical universal sd (USD) interaction created around 1980
- As experimental capabilities extended further from stability
 - Reached nuclei beyond those included in the fit
 - Large disagreements for exotic nuclei
 - Predictive power lost in fitting procedure

Example: USDA and USDB interactions

- Empirical universal sd (USD) interaction created around 1980
- As experimental capabilities extended further from stability

$$BE_{exp}(Z, N) - BE_{th}(Z, N)$$



New interactions needed within sd shell!

∃ >

Example: USDA and USDB interactions

- Brown and Richter undertook this task^a
- 608 energy levels in sd shell with uncertainty $\sigma \leq$ 200 keV compiled
- Procedure:

$$H(n = 0) = SPE(exp) + TBME(G-matrix)$$

$$\equiv P_i(n = 0)$$

$$i = 1 - 3 \qquad P_i(n) = SPE(n)$$

$$i = 4 - 66 \qquad P_i(n) = \frac{18^{0.3}}{A}TBME(n)$$

$$\{E_k(n)\} = \langle \Psi_k | H(n) | \Psi_k \rangle \qquad \stackrel{SVD}{\Rightarrow} \qquad P_i(n+1)$$

- Iteration number n increased until convergence
- Mass-dependence due to G-matrix formalism, but phenomenological

^aB.A. Brown and W. Richter, Phys. Rev. C 74, 034315 (2006)

< E >

Example: USDA and USDB interactions

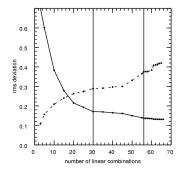
- Brown and Richter undertook this task^a
- 608 energy levels in sd shell with uncertainty $\sigma \leq$ 200 keV compiled
- USDA (USDB) found from 30 (56) linear combinations of correlated parameters
- Two interactions provide a way to estimate theoretical errors
- USDA
 - More conservative
 - Smaller rms deviation from input G-matrix values
 - 170 keV rms deviation to experimental data (global rms)
- USDB
 - More accurate
 - Also determined by plateau in deviation as function of linear parameters varied
 - 126 keV global rms deviation

^aB.A. Brown and W. Richter, Phys. Rev. C 74, 034315 (2006)

Example: USDA and USDB interactions

- Brown and Richter undertook this task^a
- 608 energy levels in sd shell with uncertainty $\sigma \leq$ 200 keV compiled

$$BE_{exp}(Z, N) - BE_{th}(Z, N)$$



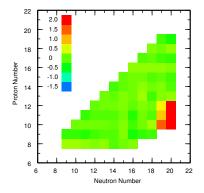
- Two interactions created based on plateau in rms deviations
- USDA more conservative (closer to G-matrix)
- USDB more accurate (smaller deviation to experimental data)

^aB.A. Brown and W. Richter, Phys. Rev. C 74, 034315 (2006)

Example: USDA and USDB interactions

- Brown and Richter undertook this task^a
- 608 energy levels in *sd* shell with uncertainty $\sigma \leq 200$ keV compiled

$$BE_{exp}(Z, N) - BE_{th}(Z, N)$$



- Improvement relative to USD interaction
- Still underbound for some exotic nuclei \rightarrow island of inversion region (see lecture 1)

^aB.A. Brown and W. Richter, Phys. Rev. C 74, 034315 (2006)

- ∢ ≣ ▶

-

E

Outline

Generalities

2 Empirical interactions

On-empirical interactions

Motivation

- Empirical interactions are only predictive within fitting data
- Continually improve by refitting as new energy levels are observed
- Lengthy, difficult procedure to determine effective interactions
 - Requires compilation of hundreds of data
 - Iterative procedure is prohibitive for larger model spaces
 - Each model space requires this procedure
- Microscopic procedures not tuned
- Assuming sufficient data, cannot improve upon empirical parameterization
- Improvements
 - Less time-consuming procedure to determine effective interactions
 - 2 No limitations on model space (number of parameters vs. data points)
 - 3 Theoretical error given by aspects excluded from RG+MBPT
 - Method for explicitly determining three-body contribution

Motivation

- Empirical interactions are only predictive within fitting data
- Continually improve by refitting as new energy levels are observed
- Lengthy, difficult procedure to determine effective interactions
 - Requires compilation of hundreds of data
 - Iterative procedure is prohibitive for larger model spaces
 - Each model space requires this procedure
- Microscopic procedures not tuned
- Assuming sufficient data, cannot improve upon empirical parameterization
- Improvements
 - Less time-consuming procedure to determine effective interactions
 - ② No limitations on model space (number of parameters vs. data points)
 - Theoretical error given by aspects excluded from RG+MBPT
 - Method for explicitly determining three-body contribution

- Main topics already presented in prior two lectures (J. Holt)
 - Select microscopic bare interactions which reproduce scattering data
 - Soften using renormalization group methods (G-matrix, v_{lowk}, SRG, etc.)
 - Offine P and Q operators (select reduced model space and basis truncation)
 - Employ many-body perturbation theory to determine two-body matrix elements
 - **O** Determine single particle energies (HF, Dyson's equation, empirically, etc.)

• NUSHELLX executable "ham" produces effective interactions

- Practical aspects of calculations must be discussed
 - Selection of basis for MBPT
 - Convergence (order of perturbation theory, $\hbar\omega$ excitations, etc.)
 - Divergences due to small energy denominators and large model spaces

- Main topics already presented in prior two lectures (J. Holt)
 - Select microscopic bare interactions which reproduce scattering data
 - Soften using renormalization group methods (G-matrix, v_{lowk}, SRG, etc.)
 - **(3)** Define *P* and *Q* operators (select reduced model space and basis truncation)
 - Employ many-body perturbation theory to determine two-body matrix elements
 - **O** Determine single particle energies (HF, Dyson's equation, empirically, etc.)
- NUSHELLX executable "ham" produces effective interactions
- Practical aspects of calculations must be discussed
 - Selection of basis for MBPT
 - Convergence (order of perturbation theory, $\hbar\omega$ excitations, etc.)
 - Divergences due to small energy denominators and large model spaces

글 🖌 🖌 글 🕨

Behavior of exotic nuclei

- Renormalization is basis-dependent (HO typical for nuclear structure applications)
- Magic numbers evolve away from stability
 - Suggests evolution of single particle shell structure
 - Not reproduced by standard HO potential in nuclear physics
- For exotic nuclei, valence orbits are often loosely bound
- Well-known problem
 - Loosely bound orbits extend farther in space
 - Huge basis required to reproduce behavior with HO wavefunctions
 - Realistic basis preferred for reasonable truncation needed computationally
- Typical realistic bases
 - Woods-Saxon basis
 - Skyrme Hartree-Fock (SHF) basis
 - Gamow basis

- (E) - (

Behavior of exotic nuclei

- Renormalization is basis-dependent (HO typical for nuclear structure applications)
- Magic numbers evolve away from stability
 - Suggests evolution of single particle shell structure
 - Not reproduced by standard HO potential in nuclear physics
- For exotic nuclei, valence orbits are often loosely bound
- Well-known problem
 - Loosely bound orbits extend farther in space
 - Huge basis required to reproduce behavior with HO wavefunctions
 - Realistic basis preferred for reasonable truncation needed computationally
- Typical realistic bases
 - Woods-Saxon basis
 - Skyrme Hartree-Fock (SHF) basis
 - Gamow basis

< E >

Behavior of exotic nuclei

- Renormalization is basis-dependent (HO typical for nuclear structure applications)
- Magic numbers evolve away from stability
 - Suggests evolution of single particle shell structure
 - Not reproduced by standard HO potential in nuclear physics
- For exotic nuclei, valence orbits are often loosely bound
- Well-known problem
 - Loosely bound orbits extend farther in space
 - Huge basis required to reproduce behavior with HO wavefunctions
 - Realistic basis preferred for reasonable truncation needed computationally
- Typical realistic bases
 - Woods-Saxon basis
 - Skyrme Hartree-Fock (SHF) basis
 - Gamow basis

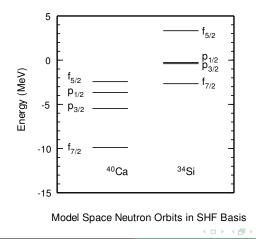
Example: *pf* neutron orbits

- Compare bases for *pf* valence space for stable ⁴⁰Ca and exotic ³⁴Si isotopes
- Both nuclei have N = 20 (same neutron occupation, same neutron valence orbits)
- HO basis energies fixed to reproduce SHF value for valence orbits (bold)

nℓi	³⁴ Si	³⁴ Si	⁴⁰ Ca	⁴⁰ Ca
5	НО	SHF	НО	SHF
0 <i>s</i> _{1/2}	-34.59	-32.79	-39.21	-38.18
0 <i>p</i> _{3/2}	-23.09	-23.10	-28.19	-29.70
0 <i>p</i> _{1/2}	-23.09	-21.74	-28.19	-26.67
$0d_{5/2}$	-11.58	-13.07	-17.17	-20.20
0 <i>d</i> _{3/2}	-11.58	-9.03	-17.17	-14.65
$1s_{1/2}$	-11.58	-10.04	-17.17	-15.75
0f _{7/2}	-0.07	-2.62	-6.15	-9.89
$0f_{5/2}$	-0.07	3.33	-6.15	-2.43
$1p_{3/2}$	-0.07	-0.40	-6.15	-5.48
$1p_{1/2}$	-0.07	-0.27	-6.15	-3.66
0g _{9/2}	11.44	9.22	4.87	1.15
0g _{7/2}	11.44	18.23	4.87	10.28

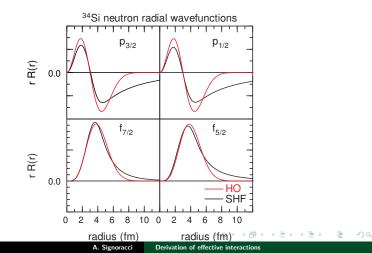
Example: pf neutron orbits

- Compare bases for pf valence space for stable ⁴⁰Ca and exotic ³⁴Si isotopes
- Both nuclei have N = 20
- Focus on model space orbits



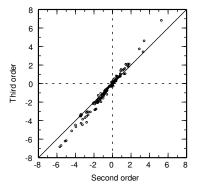
Example: *pf* neutron orbits

- Compare bases for pf valence space for stable ⁴⁰Ca and exotic ³⁴Si isotopes
- Both nuclei have N = 20
- Focus on model space orbits



• Many-body perturbation theory derived up to third order

TBME in sd shell including $6\hbar\omega$ excitations in SHF basis

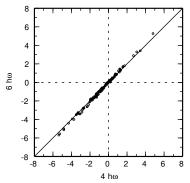


- Results with HO basis do not converge at third order^a
- Better convergence expected with realistic basis, but not achieved at third order

^aM. Hjorth-Jensen et al., Phys. Lett. B 248, 243 (1990)

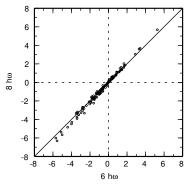
• Computational limit (typical laptop/desktop): $10\hbar\omega$ in sd shell

TBME in sd shell renormalized to second order in SHF basis



• Computational limit (typical laptop/desktop): $10\hbar\omega$ in sd shell

TBME in sd shell renormalized to second order in SHF basis



- Lack of convergence as a function of excitations and order of perturbation theory
- More attractive interaction for higher excitations and order of perturbation theory
- Must be aware of possible dependence
 - Few percent from $4\hbar\omega$ to $6\hbar\omega$ excitations
 - $\bullet~\sim 20\%$ for third order in sd shell example
- Evaluate error bars by various renormalization procedures?
- Less dependence for low-energy states in even-even nuclei
 - Statement not proven in these lectures
 - Effect on pairing matrix elements (J = 0) reduced relative to effect of basis
- Be consistent and honest in procedure
 - $\bullet\,$ NUSHELLX 'ham' executable uses second order and 6 $\hbar\omega$ by default
 - Best to evaluate dependence if possible
 - At least, state explicitly parameters used
 - Realize calculations are dependent on RG+MBPT scheme

< E >

Divergences

- Small or null energy denominators result in infinite matrix elements in MBPT
- Very common (almost automatic) with any basis
- Primary way to avoid
 - Introduce constant valence energy for all model space orbits
 - Provide starting energy (typically twice the valence energy)
 - In energy denominators of two-body diagrams
 - $\bullet~$ Use starting energy $\pm\delta\epsilon$ in place of valence orbit energy
- In model spaces comprised of orbits from multiple oscillator shells
 - Intruder states enter MBPT renormalization
 - Requires calculation of Q-box to higher order to resolve divergences
 - In practice: artificially place all model space orbits in same oscillator shell
 - Current area of research in nuclear structure theory
- Divergences
 - More common with third order of MBPT
 - More common with realistic SHF basis
 - Primarily occur when evaluating Q-box (derivative contributions)
- Can avoid divergences by selection of options in ham

Divergences

- Small or null energy denominators result in infinite matrix elements in MBPT
- Very common (almost automatic) with any basis
- Primary way to avoid
 - Introduce constant valence energy for all model space orbits
 - Provide starting energy (typically twice the valence energy)
 - In energy denominators of two-body diagrams
 - $\bullet~$ Use starting energy $\pm\delta\epsilon$ in place of valence orbit energy
- In model spaces comprised of orbits from multiple oscillator shells
 - Intruder states enter MBPT renormalization
 - Requires calculation of Q-box to higher order to resolve divergences
 - In practice: artificially place all model space orbits in same oscillator shell
 - Current area of research in nuclear structure theory
- Divergences
 - More common with third order of MBPT
 - More common with realistic SHF basis
 - Primarily occur when evaluating Q-box (derivative contributions)
- Can avoid divergences by selection of options in ham

∃ >

Divergences

- Small or null energy denominators result in infinite matrix elements in MBPT
- Very common (almost automatic) with any basis
- Primary way to avoid
 - Introduce constant valence energy for all model space orbits
 - Provide starting energy (typically twice the valence energy)
 - In energy denominators of two-body diagrams
 - $\bullet~$ Use starting energy $\pm\delta\epsilon$ in place of valence orbit energy
- In model spaces comprised of orbits from multiple oscillator shells
 - Intruder states enter MBPT renormalization
 - Requires calculation of Q-box to higher order to resolve divergences
 - In practice: artificially place all model space orbits in same oscillator shell
 - Current area of research in nuclear structure theory

• Divergences

- More common with third order of MBPT
- More common with realistic SHF basis
- Primarily occur when evaluating Q-box (derivative contributions)
- Can avoid divergences by selection of options in ham

Divergences

- Small or null energy denominators result in infinite matrix elements in MBPT
- Very common (almost automatic) with any basis
- Primary way to avoid
 - Introduce constant valence energy for all model space orbits
 - Provide starting energy (typically twice the valence energy)
 - In energy denominators of two-body diagrams
 - $\bullet~$ Use starting energy $\pm\delta\epsilon$ in place of valence orbit energy
- In model spaces comprised of orbits from multiple oscillator shells
 - Intruder states enter MBPT renormalization
 - Requires calculation of Q-box to higher order to resolve divergences
 - In practice: artificially place all model space orbits in same oscillator shell
 - Current area of research in nuclear structure theory
- Divergences
 - More common with third order of MBPT
 - More common with realistic SHF basis
 - Primarily occur when evaluating Q-box (derivative contributions)
- Can avoid divergences by selection of options in ham

- (E) - (

- Simplest procedure to create interactions
 - In NUSHELLX, run executable 'ham'
 - **2** Select model space in proton-neutron formalism (i.e., *sdpn* in sps folder, not *sd*)
 - Select target nucleus with closed subshell single particle structure
- Remaining parameters have default values printed out in *.inf file
 - Modify as desired
 - Copy *.inf file to ham.ini
 - Rerun ham to include updated parameters
- RG calculation performed by ham only if output file *.reint is nonexistent
- If parameters of RG procedure are modified (e.g. change in cutoff Λ)
 - Must enforce new RG calculation
 - Create new directory and copy ham.ini to the new directory
- More advanced options can be modified by hand
- See comment lines in bhf.ini and renorm.ini

→ Ξ →

- Simplest procedure to create interactions
 - In NUSHELLX, run executable 'ham'
 - **2** Select model space in proton-neutron formalism (i.e., *sdpn* in sps folder, not *sd*)
 - Select target nucleus with closed subshell single particle structure
- Remaining parameters have default values printed out in *.inf file
 - Modify as desired
 - Copy *.inf file to ham.ini
 - Rerun ham to include updated parameters
- RG calculation performed by ham only if output file *.reint is nonexistent
- If parameters of RG procedure are modified (e.g. change in cutoff Λ)
 - Must enforce new RG calculation
 - Create new directory and copy ham.ini to the new directory
- More advanced options can be modified by hand
- See comment lines in bhf.ini and renorm.ini

- Simplest procedure to create interactions
 - In NUSHELLX, run executable 'ham'
 - **2** Select model space in proton-neutron formalism (i.e., *sdpn* in sps folder, not *sd*)
 - Select target nucleus with closed subshell single particle structure
- Remaining parameters have default values printed out in *.inf file
 - Modify as desired
 - Copy *.inf file to ham.ini
 - Rerun ham to include updated parameters
- RG calculation performed by ham only if output file *.reint is nonexistent
- If parameters of RG procedure are modified (e.g. change in cutoff Λ)
 - Must enforce new RG calculation
 - Create new directory and copy ham.ini to the new directory
- More advanced options can be modified by hand
- See comment lines in bhf.ini and renorm.ini

- Simplest procedure to create interactions
 - In NUSHELLX, run executable 'ham'
 - **2** Select model space in proton-neutron formalism (i.e., *sdpn* in sps folder, not *sd*)
 - Select target nucleus with closed subshell single particle structure
- Remaining parameters have default values printed out in *.inf file
 - Modify as desired
 - Copy *.inf file to ham.ini
 - Rerun ham to include updated parameters
- RG calculation performed by ham only if output file *.reint is nonexistent
- If parameters of RG procedure are modified (e.g. change in cutoff Λ)
 - Must enforce new RG calculation
 - Create new directory and copy ham.ini to the new directory
- More advanced options can be modified by hand
- See comment lines in bhf.ini and renorm.ini