Shell model formalism

Angelo Signoracci

 $\mathsf{CEA}/\mathsf{Saclay}$

Lecture 1, 13 May 2013

(ロ) (部) (注) (注) (三)

- 4 ∃ →

E

ヨト・モヨト

< 17 ►

E

Nuclear structure basics

2 Shell model

3 Application to *sd* shell

Statement of the problem

$$egin{aligned} & \mathcal{H}|\Psi
angle = \mathcal{E}|\Psi
angle \ \mathcal{H} = \sum_{l_1 l_2} t_{l_1 l_2} c_{l_1}^\dagger c_{l_2} + rac{1}{(2!)^2} \sum_{l_1 l_2 l_3 l_4} ar{v}_{l_1 l_2 l_3 l_4} c_{l_1}^\dagger c_{l_2}^\dagger c_{l_4} c_{l_3} \ &+ rac{1}{(3!)^2} \sum_{l_1 l_2 l_3 l_4 l_5 l_6} ar{w}_{l_1 l_2 l_3 l_4 l_5 l_6} c_{l_1}^\dagger c_{l_2}^\dagger c_{l_3}^\dagger c_{l_6} c_{l_5} c_{l_4} + \dots \end{aligned}$$

- Standard eigenvalue problem, but two issues arise for nuclei
- Mesoscopic system
 - 10s-100s of particles
 - Too many permutations to solve computationally
 - System not large enough to treat statistically
- Nuclear Hamiltonian
 - $\bullet\,$ Nucleons are composite particles (quark/gluon degrees of freedom \rightarrow QCD)
 - Low-energy nuclear physics is typically insensitive to quark dynamics
 - $\bullet\,$ Chiral effective field theory ($\chi {\sf EFT})$ provides a low-energy effective approach
 - Nuclear interaction depends on renormalization, is not analytic
 - The nuclear Hamiltonian is scale-dependent
- Exact solution impossible- attempt reasonable approximations

Statement of the problem

$$egin{aligned} & \mathcal{H}|\Psi
angle = \mathcal{E}|\Psi
angle \ \mathcal{H} = \sum_{l_1 l_2} t_{l_1 l_2} c_{l_1}^\dagger c_{l_2} + rac{1}{(2!)^2} \sum_{l_1 l_2 l_3 l_4} ar{v}_{l_1 l_2 l_3 l_4} c_{l_1}^\dagger c_{l_2}^\dagger c_{l_4} c_{l_3} \ &+ rac{1}{(3!)^2} \sum_{l_1 l_2 l_3 l_4 l_5 l_6} ar{w}_{l_1 l_2 l_3 l_4 l_5 l_6} c_{l_1}^\dagger c_{l_2}^\dagger c_{l_3}^\dagger c_{l_6} c_{l_5} c_{l_4} + \dots \end{aligned}$$

- Standard eigenvalue problem, but two issues arise for nuclei
- Mesoscopic system
 - 10s-100s of particles
 - Too many permutations to solve computationally
 - System not large enough to treat statistically
- Nuclear Hamiltonian
 - Nucleons are composite particles (quark/gluon degrees of freedom ightarrow QCD)
 - Low-energy nuclear physics is typically insensitive to quark dynamics
 - Chiral effective field theory (χ EFT) provides a low-energy effective approach
 - Nuclear interaction depends on renormalization, is not analytic
 - The nuclear Hamiltonian is scale-dependent
- Exact solution impossible- attempt reasonable approximations

Statement of the problem

$$egin{aligned} & \mathcal{H}|\Psi
angle = \mathcal{E}|\Psi
angle \ \mathcal{H} = \sum_{l_1 l_2} t_{l_1 l_2} c_{l_1}^\dagger c_{l_2} + rac{1}{(2!)^2} \sum_{l_1 l_2 l_3 l_4} ar{v}_{l_1 l_2 l_3 l_4} c_{l_1}^\dagger c_{l_2}^\dagger c_{l_4} c_{l_3} \ &+ rac{1}{(3!)^2} \sum_{l_1 l_2 l_3 l_4 l_5 l_6} ar{w}_{l_1 l_2 l_3 l_4 l_5 l_6} c_{l_1}^\dagger c_{l_2}^\dagger c_{l_3}^\dagger c_{l_6} c_{l_5} c_{l_4} + \dots \end{aligned}$$

- Standard eigenvalue problem, but two issues arise for nuclei
- Mesoscopic system
 - 10s-100s of particles
 - Too many permutations to solve computationally
 - System not large enough to treat statistically
- Nuclear Hamiltonian
 - Nucleons are composite particles (quark/gluon degrees of freedom \rightarrow QCD)
 - Low-energy nuclear physics is typically insensitive to quark dynamics
 - Chiral effective field theory ($\chi {\sf EFT})$ provides a low-energy effective approach
 - Nuclear interaction depends on renormalization, is not analytic
 - The nuclear Hamiltonian is scale-dependent
- Exact solution impossible- attempt reasonable approximations

Statement of the problem

$$\begin{split} H|\Psi\rangle &= E|\Psi\rangle\\ H &= \sum_{l_1l_2} t_{l_1l_2} c_{l_1}^\dagger c_{l_2} + \frac{1}{(2!)^2} \sum_{l_1l_2l_3l_4} \bar{v}_{l_1l_2l_3l_4} c_{l_1}^\dagger c_{l_2}^\dagger c_{l_4} c_{l_3}\\ &+ \frac{1}{(3!)^2} \sum_{l_1l_2l_3l_4l_5l_6} \bar{w}_{l_1l_2l_3l_4l_5l_6} c_{l_1}^\dagger c_{l_2}^\dagger c_{l_3}^\dagger c_{l_6} c_{l_5} c_{l_4} + \dots \end{split}$$

- Standard eigenvalue problem, but two issues arise for nuclei
- Mesoscopic system
 - 10s-100s of particles
 - Too many permutations to solve computationally
 - System not large enough to treat statistically
- Nuclear Hamiltonian
 - $\bullet\,$ Nucleons are composite particles (quark/gluon degrees of freedom \rightarrow QCD)
 - Low-energy nuclear physics is typically insensitive to quark dynamics
 - Chiral effective field theory ($\chi {\sf EFT})$ provides a low-energy effective approach
 - Nuclear interaction depends on renormalization, is not analytic
 - The nuclear Hamiltonian is scale-dependent
- Exact solution impossible- attempt reasonable approximations

- Interaction between two point-like nucleons?
 - Can determine a two-body interaction from nucleon-nucleon (NN) scattering
 - Can derive a Hamiltonian from $\chi {\rm EFT}$ based on QCD order by order
 - Coupling constants are parameters, can be fit to experimental scattering data
- Complications
 - Nucleus with mass A has, in principle, A-body Hamiltonian
 - Difficult to implement for structure calculations
 - Calculations are expensive even if exact Hamiltonian is known
- Hierarchy in forces (NN > NNN > NNNN ...)
 - Suggested empirically
 - Confirmed by χEFT
- Limit to three-body forces in nuclear Hamiltonian
- Assume bare microscopic interactions (NN and NNN) are known
 - Underlying approximation to all further results
 - Will not evaluate effect of initial interaction
- Similarities to atomic problem suggest simpler calculational methods

Nuclear Forces

- Interaction between two point-like nucleons?
 - Can determine a two-body interaction from nucleon-nucleon (NN) scattering
 - $\bullet\,$ Can derive a Hamiltonian from $\chi {\rm EFT}$ based on QCD order by order
 - Coupling constants are parameters, can be fit to experimental scattering data

Complications

- Nucleus with mass A has, in principle, A-body Hamiltonian
- Difficult to implement for structure calculations
- Calculations are expensive even if exact Hamiltonian is known
- Hierarchy in forces ($NN > NNN > NNN \dots$)
 - Suggested empirically
 - Confirmed by χEFT
- Limit to three-body forces in nuclear Hamiltonian
- Assume bare microscopic interactions (NN and NNN) are known
 - Underlying approximation to all further results
 - Will not evaluate effect of initial interaction
- Similarities to atomic problem suggest simpler calculational methods

- Interaction between two point-like nucleons?
 - Can determine a two-body interaction from nucleon-nucleon (NN) scattering
 - $\bullet\,$ Can derive a Hamiltonian from $\chi {\rm EFT}$ based on QCD order by order
 - Coupling constants are parameters, can be fit to experimental scattering data
- Complications
 - Nucleus with mass A has, in principle, A-body Hamiltonian
 - Difficult to implement for structure calculations
 - Calculations are expensive even if exact Hamiltonian is known
- Hierarchy in forces ($NN > NNN > NNNN \dots$)
 - Suggested empirically
 - Confirmed by χEFT
- Limit to three-body forces in nuclear Hamiltonian
- Assume bare microscopic interactions (NN and NNN) are known
 - Underlying approximation to all further results
 - Will not evaluate effect of initial interaction
- Similarities to atomic problem suggest simpler calculational methods

- Interaction between two point-like nucleons?
 - Can determine a two-body interaction from nucleon-nucleon (NN) scattering
 - $\bullet\,$ Can derive a Hamiltonian from $\chi {\rm EFT}$ based on QCD order by order
 - Coupling constants are parameters, can be fit to experimental scattering data
- Complications
 - Nucleus with mass A has, in principle, A-body Hamiltonian
 - Difficult to implement for structure calculations
 - Calculations are expensive even if exact Hamiltonian is known
- Hierarchy in forces ($NN > NNN > NNNN \dots$)
 - Suggested empirically
 - Confirmed by $\chi {\rm EFT}$
- Limit to three-body forces in nuclear Hamiltonian
- Assume bare microscopic interactions (NN and NNN) are known
 - Underlying approximation to all further results
 - Will not evaluate effect of initial interaction
- Similarities to atomic problem suggest simpler calculational methods

- Interaction between two point-like nucleons?
 - Can determine a two-body interaction from nucleon-nucleon (NN) scattering
 - Can derive a Hamiltonian from $\chi {\rm EFT}$ based on QCD order by order
 - Coupling constants are parameters, can be fit to experimental scattering data
- Complications
 - Nucleus with mass A has, in principle, A-body Hamiltonian
 - Difficult to implement for structure calculations
 - Calculations are expensive even if exact Hamiltonian is known
- Hierarchy in forces ($NN > NNN > NNNN \dots$)
 - Suggested empirically
 - Confirmed by $\chi {\rm EFT}$
- Limit to three-body forces in nuclear Hamiltonian
- Assume bare microscopic interactions (NN and NNN) are known
 - Underlying approximation to all further results
 - Will not evaluate effect of initial interaction
- Similarities to atomic problem suggest simpler calculational methods

Single particle shell structure

- Mean field in the nucleus produced by A nucleons composing it
 - Familiar idea (atoms- low density of electrons and point-like nucleus)
 - Experimental observations: high $E(2+)^a$, low B(E2), BE...

 \rightarrow "magic" numbers

- Indicative of single particle shell closures (e.g., group 18 noble gases)
- Collisions within the nucleus are suppressed due to the Pauli principle

Single particle shell structure

- Mean field in the nucleus produced by A nucleons composing it
 - Familiar idea (atoms- low density of electrons and point-like nucleus)
 - Experimental observations: high E(2+), low B(E2), $BE \dots$

 \rightarrow "magic" numbers

- Collisions within the nucleus are suppressed due to the Pauli principle
- Nuclear Hamiltonian:

$$\begin{split} H &= T + V \\ &= \sum_{l_1 l_2} t_{l_1 l_2} c_{l_1}^{\dagger} c_{l_2} + \frac{1}{(2!)^2} \sum_{l_1 l_2 l_3 l_4} \bar{v}_{l_1 l_2 l_3 l_4} c_{l_1}^{\dagger} c_{l_2}^{\dagger} c_{l_4} c_{l_3} + \dots \\ &= [T + V_{mf}] + [V - V_{mf}] \\ &= H_0 + H_1 \end{split}$$

• Analytic solutions to one-body $H_0 = \sum_i \epsilon_i a_i^{\dagger} a_i$ provide typical single particle bases

• A-body (in principle) residual interaction treated approximately

イロト 不得下 不足下 不足下 一足

Harmonic oscillator (HO) single particle bases

- Neutron single particle orbits
- Determine $\hbar\omega$ empirically
- For $^{132}{\rm Sn},~\hbar\omega\approx 8~{\rm MeV}$

ヨト・モヨト

< 17 ►

E

Nuclear structure basics

Motivation

- Need to simplify the nuclear many-body problem
- Harmonic oscillator potential (with spin-orbit) reproduces magic numbers
- Results in large energy gaps between bunches of single particle orbits
- Fundamental assumptions
 - Interested in low-energy nuclear properties
 - ② Strongly bound single particle orbits are rarely excited ightarrow core
 - Properties outside core can be represented by few orbits
- Physical energy scale limited approximately by single particle energy gaps

Motivation

- Need to simplify the nuclear many-body problem
- Harmonic oscillator potential (with spin-orbit) reproduces magic numbers
- Results in large energy gaps between bunches of single particle orbits
- Fundamental assumptions
 - Interested in low-energy nuclear properties
 - $\textbf{@ Strongly bound single particle orbits are rarely excited} \rightarrow \text{core}$
 - Properties outside core can be represented by few orbits
- Physical energy scale limited approximately by single particle energy gaps

Independent particle model

- Simplest approximation: easy to solve, limited applicability
- Find exact solution to basis $H_0 |\phi_i\rangle = \epsilon_i |\phi_i\rangle$
- Core of mass A_c with Z_c protons and N_c neutrons (Z_c, N_c closed subshells)
- Single Slater determinant describes wavefunctions

$$|\Phi^{A_c}\rangle \equiv |\phi_1\phi_2\dots\phi_{Z_c}\rangle\otimes |\phi_1\phi_2\dots\phi_{N_c}\rangle$$

Energy of core

$$E_c = \sum_{i=1}^{Z_c} \epsilon_i + \sum_{i=1}^{N_c} \epsilon_i$$

- Nuclei with $A_c + 1$ are given by $|\Phi^{A+1}\rangle = a_i^{\dagger} |\Phi^A\rangle$ with $i = Z_c + 1, N_c + 1$
- Energy relative to core

$$E_{(c+p)} - E_c = \epsilon_{(Z_c+1)} \qquad \qquad E_{(c+n)} - E_c = \epsilon_{(N_c+1)}$$

- Slater determinant is tailored to reproduce experimental data
 - Correlations implicitly included ightarrow experiments measure many-body system
 - Dominant states are reproduced, but fragmentation occurs
 - Distinct from other Slater determinant methods like EDF methods

Independent particle model

- Simplest approximation: easy to solve, limited applicability
- Find exact solution to basis $H_0 |\phi_i\rangle = \epsilon_i |\phi_i\rangle$
- Core of mass A_c with Z_c protons and N_c neutrons (Z_c , N_c closed subshells)
- Single Slater determinant describes wavefunctions

$$|\Phi^{A_c}\rangle \equiv |\phi_1\phi_2\dots\phi_{Z_c}\rangle\otimes |\phi_1\phi_2\dots\phi_{N_c}\rangle$$

Energy of core

$$E_c = \sum_{i=1}^{Z_c} \epsilon_i + \sum_{i=1}^{N_c} \epsilon_i$$

- Nuclei with $A_c + 1$ are given by $|\Phi^{A+1}\rangle = a_i^{\dagger} |\Phi^A\rangle$ with $i = Z_c + 1, N_c + 1$
- Energy relative to core

$$E_{(c+p)} - E_c = \epsilon_{(Z_c+1)} \qquad \qquad E_{(c+n)} - E_c = \epsilon_{(N_c+1)}$$

- Slater determinant is tailored to reproduce experimental data
 - $\bullet\,$ Correlations implicitly included $\rightarrow\,$ experiments measure many-body system
 - Dominant states are reproduced, but fragmentation occurs
 - Distinct from other Slater determinant methods like EDF methods

¹⁶O in independent particle model

- Single Slater determinant
- $BE(^{17}O) BE(^{16}O) = 4.14$ MeV
- $BE(^{18}O) BE(^{16}O) = 12.19 \text{ MeV}$
- Too simple model already!

Connection to Hartree-Fock (HF)

Schrödinger equation $H|\Psi
angle=E|\Psi
angle$

- Independent particle model:
 - Approximate H by $H_0 = T + V_{mf}$
 - Select reasonable V_{mf}
 - Solve $H_0 |\phi_i\rangle = \epsilon_i |\phi_i\rangle$ • $E_0 = \sum_{i=1}^{A} \epsilon_i$ for A nucleons
 - No correlations
 - Only appropriate for closed shells $\pm \ 1$

• (symmetry-restricted) Hartree-Fock:

• Approximate
$$|\Psi
angle$$
 by $|\Phi
angle = \prod_{i=1}^{A} a_{i}^{\dagger} |0
angle$

• Variational principle (minimizes energy)

イロト 不得下 不足下 不足下 一足

- Determine single particle basis $\{|\phi\rangle\}$
- Limited correlations
- Best near closed shells

- Independent particle model is not rich enough
- Single-reference Hartree-Fock is better but suffers from same limitations
- Need to include correlations without solving full many-body problem
- Select core with A_c as before (closed subshells)
 - Treat core as vacuum based on large energy gap in single particle orbits
 - Fewer nucleons treated explicitly (valence particles $A_{val} = A A_c$)
- Limit to "valence orbits" up to another large energy gap
- Reduction in model space (and number of particles)
 - Schrödinger equation can be solved completely
 - Separation into long-range and short-range correlations
 - Long-range correlations are completely included
- Can other effects be included?
 - Polarization of the core by valence particles
 - ② Virtual scattering of valence particles into higher-lying orbits
 - In Full short-range correlations

- Independent particle model is not rich enough
- Single-reference Hartree-Fock is better but suffers from same limitations
- Need to include correlations without solving full many-body problem
- Select core with A_c as before (closed subshells)
 - Treat core as vacuum based on large energy gap in single particle orbits
 - Fewer nucleons treated explicitly (valence particles $A_{val} = A A_c$)
- Limit to "valence orbits" up to another large energy gap
- Reduction in model space (and number of particles)
 - Schrödinger equation can be solved completely
 - Separation into long-range and short-range correlations
 - Long-range correlations are completely included
- Can other effects be included?
 - Operation of the core by valence particles
 - ② Virtual scattering of valence particles into higher-lying orbits
 - In the second second

- Independent particle model is not rich enough
- Single-reference Hartree-Fock is better but suffers from same limitations
- Need to include correlations without solving full many-body problem
- Select core with A_c as before (closed subshells)
 - Treat core as vacuum based on large energy gap in single particle orbits
 - Fewer nucleons treated explicitly (valence particles $A_{val} = A A_c$)
- Limit to "valence orbits" up to another large energy gap
- Reduction in model space (and number of particles)
 - Schrödinger equation can be solved completely
 - Separation into long-range and short-range correlations
 - Long-range correlations are completely included
- Can other effects be included?
 - Operation of the core by valence particles
 - ② Virtual scattering of valence particles into higher-lying orbits
 - In the second second

- Independent particle model is not rich enough
- Single-reference Hartree-Fock is better but suffers from same limitations
- Need to include correlations without solving full many-body problem
- Select core with A_c as before (closed subshells)
 - Treat core as vacuum based on large energy gap in single particle orbits
 - Fewer nucleons treated explicitly (valence particles $A_{val} = A A_c$)
- Limit to "valence orbits" up to another large energy gap
- Reduction in model space (and number of particles)
 - Schrödinger equation can be solved completely
 - Separation into long-range and short-range correlations
 - Long-range correlations are completely included
- Can other effects be included?
 - Polarization of the core by valence particles
 - ② Virtual scattering of valence particles into higher-lying orbits
 - I Full short-range correlations

- Independent particle model is not rich enough
- Single-reference Hartree-Fock is better but suffers from same limitations
- Need to include correlations without solving full many-body problem
- Select core with A_c as before (closed subshells)
 - Treat core as vacuum based on large energy gap in single particle orbits
 - Fewer nucleons treated explicitly (valence particles $A_{val} = A A_c$)
- Limit to "valence orbits" up to another large energy gap
- Reduction in model space (and number of particles)
 - Schrödinger equation can be solved completely
 - Separation into long-range and short-range correlations
 - Long-range correlations are completely included
- Can other effects be included?
 - Polarization of the core by valence particles
 - Virtual scattering of valence particles into higher-lying orbits
 - Full short-range correlations

Effective interaction

- Incorporate effects from outside of the model space into the Hamiltonian
- Still, cannot account for everything (e.g., short-range correlations)
- Reduction in degrees of freedom = reduction in possibilities
- Production of interactions is extremely important
 - Multiple lectures will focus on various procedures and mindsets
 - Tutorial sessions devoted to derivation and implementation
 - Will proceed currently with a general Hamiltonian

Effective interaction

- Incorporate effects from outside of the model space into the Hamiltonian
- Still, cannot account for everything
- Reduction in degrees of freedom = reduction in possibilities
- Production of interactions is extremely important
 - Multiple lectures will focus on various procedures and mindsets
 - Practice sessions devoted to implementations
 - Will proceed currently with a general Hamiltonian

Effective interaction

- Representation of effective interaction in reduced model space
 - **(**) Single particle energies (SPE): ϵ_i where *i* refers to valence orbits
 - Two-body matrix elements (TBME):

$$\langle (ab)_{JT} | V_{ms} | (cd)_{JT} \rangle$$

- Model space orbits a, b, c, d
- Angular momentum and isospin J and T, respectively
- V_{ms} is the effective interaction in the reduced model space
- Finite number of TBME for a given model space determined by J and T coupling
- V_{ms} distinct from original Hamiltonian
- Lowest order (monopole) of multipole expansion of the interaction

$$\bar{V}_{ab}^{T} = \frac{\sum_{J} (2J+1) \langle (ab)_{JT} | V_{ms} | (ab)_{JT} \rangle [1-(-1)^{J+T} \delta_{ab}]}{\sum_{J} (2J+1) [1-(-1)^{J+T} \delta_{ab}]}$$

Model Spaces

Model Spaces

• Most common model spaces (courtesy of Alex Brown)

Model Spaces

• Inclusion of $j_{>}$ orbit (courtesy of Alex Brown)

Model Spaces

- Extension to heavier nuclei with N > Z (courtesy of Alex Brown)
- Based on stable magic numbers \rightarrow island of inversion region?

Summary

• Cannot solve full Schrödinger equation beyond lightest nuclei

• Search for approximate techniques

- Because nuclei display shell structure via "magic" numbers
 - Break Hamiltonian into mean field and residual interaction
 - Solve mean field Hamiltonian for single particle basis
 - Utilize large energy gaps in basis to isolate few valence orbits
 - Treat core of model space as vacuum
 - Solve Schrödinger equation exactly in reduced model space
- Typically called shell model in nuclear physics
- Falls under more general category of configuration interaction (CI) theory

Summary

- Cannot solve full Schrödinger equation beyond lightest nuclei
- Search for approximate techniques
- Because nuclei display shell structure via "magic" numbers
 - Break Hamiltonian into mean field and residual interaction
 - Solve mean field Hamiltonian for single particle basis
 - Utilize large energy gaps in basis to isolate few valence orbits
 - Treat core of model space as vacuum
 - Solve Schrödinger equation exactly in reduced model space
- Typically called shell model in nuclear physics
- Falls under more general category of configuration interaction (CI) theory

Summary

- Cannot solve full Schrödinger equation beyond lightest nuclei
- Search for approximate techniques
- Because nuclei display shell structure via "magic" numbers
 - Break Hamiltonian into mean field and residual interaction
 - Solve mean field Hamiltonian for single particle basis
 - Utilize large energy gaps in basis to isolate few valence orbits
 - Treat core of model space as vacuum
 - Solve Schrödinger equation exactly in reduced model space
- Typically called shell model in nuclear physics
- Falls under more general category of configuration interaction (CI) theory

- ∢ ≣ ▶

E

Outline

Nuclear structure basics

2 Shell model

3 Application to *sd* shell

Opening remarks

- Hamiltonian operating only in the reduced model space is required
- $\bullet\,$ For now, given empirically by USDB interaction ^1
- SPE and TBME parameterized (66 parameters in all)
- Fit to experimental energies in sd shell
 - Iterative procedure of CI calculations for states accessible in the model space
 - See Lecture VII for details
- Use sd shell as example, same principles apply throughout nuclear chart

¹⁶O as core

- sd model space outlined
- Separation from *p* and *pf* shells
- N = 0, 1 oscillator shells filled

•
$$|^{16}O \rangle \equiv |0
angle$$

•
$$E(^{16}O) = 0$$

Simplest system- ¹⁷O

- One valence neutron
- Three orbits to occupy
- ⁽¹²⁾
 ₁ = 3 possibilities to add nucleons
- Three possible states^a

^aSee Lecture II for counting procedure

- Experiment displays richer behavior
 - Intruder states (only positive-parity many-body states from sd orbits)
 - Is Fragmentation of single particle strength due to correlations
- Calculated $BE_{USDB}(^{17}O) = 3.93$ MeV, whereas $BE_{exp}(^{17}O) = 131.76$ MeV
- USDB selects 16 O as vacuum with E = 0 MeV

•
$$BE_{exp}(^{17}O) - BE_{exp}(^{16}O) = 4.14 \text{ MeV}$$

Spectroscopic factors

- Basis-independent, but not observable
- Spectroscopic probability matrices

$$\mathcal{S}^{+
ho q}_{\mu}\equiv \langle \Psi^A_0|a_{
ho}|\Psi^{A+1}_{\mu}
angle \langle \Psi^{A+1}_{\mu}|a^{\dagger}_q|\Psi^A_0
angle$$

and

$$\mathcal{S}_{
u}^{-
ho q}\equiv \langle \Psi_{0}^{A}|a_{q}^{\dagger}|\Psi_{
u}^{A-1}
angle \langle \Psi_{
u}^{A-1}|a_{
ho}|\Psi_{0}^{A}
angle$$

- Spectroscopic factors (SF) found from tracing spectroscopic probability matrices
- In reduced model space, recover typical "definitions"

$$SF^+_\mu \equiv |\langle \Psi^{A+1}_\mu | a^\dagger_q | \Psi^A_0
angle|^2$$

and

$$SF_{
u}^{-}\equiv |\langle \Psi_{
u}^{A-1}|a_{
ho}|\Psi_{0}^{A}
angle |^{2}$$

Spectroscopic factors

- For ${}^{17}\text{O}$ in *sd* shell, each state carries full spectroscopic strength
 - Only one valence particle
- "Experimental" SF
 - SF = 0.81 for $\frac{5}{2}^+$ ground state of ¹⁷O ^a
 - SF = 0.67 for $\frac{3}{2}^+$ "single particle peak" at 5.09 MeV^b
 - SF = 0.06 for $\frac{3}{2}^+$ state at 5.87 MeV^c
- Problematic for calculations? Is ¹⁶O a good enough core?

^aJ. Lee, M.B. Tsang, and W.G. Lynch, Phys. Rev. C **75**, 064320 (2007)
 ^bM. Yasue et al., Phys. Rev. C **46**, 1242 (1992)
 ^cM. Yasue et al., Phys. Rev. C **46**, 1242 (1992)

Next simplest system- ¹⁸O

- Two valence neutrons
- Three orbits to occupy
- $\binom{12}{2} = 66$ possibilites to add nucleons
- Only 14 possible states^a

^aSee Lecture II for counting procedure

- Experiment displays richer behavior, including negative-parity intruder states
- Calculated $BE_{USDB}(^{18}O) = 11.93$ MeV, whereas $BE_{exp}(^{18}O) = 139.81$ MeV
- $BE_{exp}(^{18}\text{O}) BE_{exp}(^{16}\text{O}) = 12.19 \text{ MeV}$

More complicated-²²Na

- Odd-odd nucleus
- Three neutrons, three protons
- $\binom{12}{3}^2 = 48400$ possibilities
- 3266 possible states^a

^aSee Lecture II for counting procedure

- USDB interaction is isospin-symmetric (no Coulomb force!)
- $E_{USDB}(^{22}Na) = -58.44 \text{ MeV}$
- $E_{USDB}(^{22}Na) = -46.71 \text{ MeV}$ (Coulomb corrected)
- $BE_{exp}(^{22}Na) BE_{exp}(^{16}O) = 46.53 \text{ MeV}$

- All sd nuclei have such level schemes available²
- $\bullet\,$ Overall, root-mean-square (rms) deviation of ≈ 170 keV to low-energy states
- Only considering states accessible in the model space
- USDB has been used in hundreds of calculations
- Only energies thus far, but good agreement for other nuclear properties
 - To be discussed in more detail later
- Slater determinant of N = 0, 1 HO orbits not accurate description of ¹⁶O
 - Seen from Hartree-Fock or realistic calculation (e.g., coupled cluster)
 - Correlations contribute multiple MeV to ground state
 - Excited states exist- experimentally $E(0_2^+) = 6.05$ MeV
 - Single particle strength fragmented in 17 C
- Still reproduce results in *sd* shell well!
- Long-range correlations cause low-energy behavior in *sd* shell nuclei

 $^{2} http://www.nscl.msu.edu/{\sim}brown/resources/resources.html$

T. Duguet and G. Hagen, Phys. Rev. C **85**, 034330 (2012

- All sd nuclei have such level schemes available²
- $\bullet\,$ Overall, root-mean-square (rms) deviation of ≈ 170 keV to low-energy states
- Only considering states accessible in the model space
- USDB has been used in hundreds of calculations
- Only energies thus far, but good agreement for other nuclear properties
 - To be discussed in more detail later
- Slater determinant of N = 0, 1 HO orbits not accurate description of ${
 m ^{16}O}$
 - Seen from Hartree-Fock or realistic calculation (e.g., coupled cluster)
 - Correlations contribute multiple MeV to ground state
 - Excited states exist- experimentally $E(0_2^+) = 6.05$ MeV
 - Single particle strength fragmented in ¹⁷O³
- Still reproduce results in *sd* shell well!
- Long-range correlations cause low-energy behavior in sd shell nuclei

 $^{^{2}} http://www.nscl.msu.edu/{\sim} brown/resources/resources.html$

³T. Duguet and G. Hagen, Phys. Rev. C **85**, 034330 (2012)

- All sd nuclei have such level schemes available²
- $\bullet\,$ Overall, root-mean-square (rms) deviation of ≈ 170 keV to low-energy states
- Only considering states accessible in the model space
- USDB has been used in hundreds of calculations
- Only energies thus far, but good agreement for other nuclear properties
 - To be discussed in more detail later
- Slater determinant of N = 0, 1 HO orbits not accurate description of ${
 m ^{16}O}$
 - Seen from Hartree-Fock or realistic calculation (e.g., coupled cluster)
 - Correlations contribute multiple MeV to ground state
 - Excited states exist- experimentally $E(0_2^+) = 6.05$ MeV
 - Single particle strength fragmented in ¹⁷O³
- Still reproduce results in *sd* shell well!
- Long-range correlations cause low-energy behavior in sd shell nuclei

³T. Duguet and G. Hagen, Phys. Rev. C **85**, 034330 (2012)

 $^{^{2}} http://www.nscl.msu.edu/{\sim}brown/resources/resources.html$

- All sd nuclei have such level schemes available²
- $\bullet\,$ Overall, root-mean-square (rms) deviation of ≈ 170 keV to low-energy states
- Only considering states accessible in the model space
- USDB has been used in hundreds of calculations
- Only energies thus far, but good agreement for other nuclear properties
 - To be discussed in more detail later
- Slater determinant of N = 0, 1 HO orbits not accurate description of ${
 m ^{16}O}$
 - Seen from Hartree-Fock or realistic calculation (e.g., coupled cluster)
 - Correlations contribute multiple MeV to ground state
 - Excited states exist- experimentally $E(0_2^+) = 6.05$ MeV
 - Single particle strength fragmented in ¹⁷O³
- Still reproduce results in *sd* shell well!
- Long-range correlations cause low-energy behavior in *sd* shell nuclei

 $^{^{2}} http://www.nscl.msu.edu/{\sim}brown/resources/resources.html$

³T. Duguet and G. Hagen, Phys. Rev. C **85**, 034330 (2012)

Problems remain

• Even with correct interaction, can fail to reproduce low-energy states

$$BE_{exp}(Z, N) - BE_{th}(Z, N)$$

- Wrong degrees of freedom (missing necessary valence orbits)
- Invalidates assumption that shell gap excludes pf orbits
- Referred to as the island of inversion region