Shell model calculations and the production of nuclear Hamiltonians

Angelo Signoracci

 $\mathsf{CEA}/\mathsf{Saclay}$

Opening Remarks, 13 May 2013

< □ > < @ > < 注 > < 注 > ... 注

Revised schedule

Mon. 13 May	Tues. 14 May	Wed. 15 May	Thurs. 16 May
	09h30 Lecture III	09h30 Lecture V	09h30 Lecture VIII
	10h45 Break	10h45 Break	10h45 Break
11h15 Welcome	11h15 Lecture IV	11h15 Lecture VI	11h15 Tutorial IV
12h30 Lunch	12h30 Lunch	12h30 Lunch	12h30 Lunch
14h30 Lecture I	14h30 Tutorial I	14h30 Lecture VII	14h30 Tutorial V
15h45 Break	15h45 Break	15h45 Break	15h45 Break
16h15 Lecture II	16h15 Tutorial II	16h15 Tutorial III	16h15 Team Project
17h30 End	17h30 End	17h30 End	17h30 End

1

Revised schedule

Thurs. 16 May	Fri. 17 May
09h30 Lecture VIII	09h30 Team Project II
10h45 Break	10h45 Break
11h15 Tutorial IV	11h15 Team Project III
12h30 Lunch	12h30 Lunch
14h30 Tutorial V	14h30 Presentations
15h45 Break	15h45 Break
16h15 Team Project I	16h15 Wrap-up
17h30 End	17h30 End

∃ >

Background knowledge

- Basic quantum mechanics
 - Second quantization, angular momentum coupling, solutions to 1-D Schrödinger Eq.
 - Any missing information can be found in standard textbooks
- Introductory nuclear physics
- No familiarity with shell model calculations
- Lectures presented for students, tutorials for beginners
- Perform calculations individually, even for group exercises
- Short presentation (pprox 15 min) on results
- Most important point
 - Ask questions!!
 - Before, during, and after lectures/tutorials

Background knowledge

- Basic quantum mechanics
 - Second quantization, angular momentum coupling, solutions to 1-D Schrödinger Eq.
 - Any missing information can be found in standard textbooks
- Introductory nuclear physics
- No familiarity with shell model calculations

• Lectures presented for students, tutorials for beginners

- Perform calculations individually, even for group exercises
- Short presentation (pprox 15 min) on results
- Most important point
 - Ask questions!!
 - Before, during, and after lectures/tutorials

Background knowledge

- Basic quantum mechanics
 - Second quantization, angular momentum coupling, solutions to 1-D Schrödinger Eq.
 - Any missing information can be found in standard textbooks
- Introductory nuclear physics
- No familiarity with shell model calculations
- Lectures presented for students, tutorials for beginners
- Perform calculations individually, even for group exercises
- \bullet Short presentation (≈ 15 min) on results
- Most important point
 - Ask questions!!
 - Before, during, and after lectures/tutorials

- Background knowledge
 - Basic quantum mechanics
 - Second quantization, angular momentum coupling, solutions to 1-D Schrödinger Eq.
 - Any missing information can be found in standard textbooks
 - Introductory nuclear physics
 - No familiarity with shell model calculations
- Lectures presented for students, tutorials for beginners
- Perform calculations individually, even for group exercises
- \bullet Short presentation (≈ 15 min) on results
- Most important point
 - Ask questions!!
 - Before, during, and after lectures/tutorials

Covered topics

- General introduction
- Motivation for shell model
- Procedure for configuration interaction calculations
- Practical aspects for implementation
- Nuclear forces
- Renormalization group methods
- Derivation of effective interactions from microscopic potentials
- Effect of three-body forces

- Covered topics
 - General introduction
 - Motivation for shell model
 - Procedure for configuration interaction calculations
 - Practical aspects for implementation
 - Nuclear forces
 - Renormalization group methods
 - Derivation of effective interactions from microscopic potentials
 - Effect of three-body forces
- Beyond expected background, lectures should be self-contained

- Covered topics
 - General introduction
 - Motivation for shell model
 - Procedure for configuration interaction calculations
 - Practical aspects for implementation
 - Nuclear forces
 - Renormalization group methods
 - Derivation of effective interactions from microscopic potentials
 - Effect of three-body forces
- Beyond expected background, lectures should be self-contained
- Bypassed topics
 - Other nuclear structure techniques
 - Energy density functional methods
 - Ab initio techniques (coupled cluster, Green's function Monte Carlo, etc.)
 - Reaction methods (beyond decays)
 - Recent advances in shell model techniques
 - Coupling to the continuum
 - O No core shell model
 - 3 . . .

Covered topics-tutorial sessions

- Selection of model space and interaction
- Production of interactions
- Calculation of level schemes and decays
- · Calculation of spectroscopic factors and transitions
- Limitations within a model space
- Inclusion of three-body forces
- Practical problems with shell model codes

Practical Details

• Controlled access: if you are stopped

- Show your ID
- State your participation in tutorial at ESNT
- Transportation required for lunch each afternoon
 - CEA bus departs around 12:40pm each day outside of Building 703
 - Find organizers at cashier station
- Obtain wireless access from Danielle Coret (Office 146)
- Buses to and from Le Guichet (RER B station to Paris)
 - CEA line from Le Guichet to Saclay: 8am to 9:45am (every 15 minutes)
 - CEA line from Building 703 to Le Guichet: 5:18pm to 7:18pm (every 30 minutes)
 - Public buses (line 9): station outside of Saclay
- Tutorial website (for lectures and other materials)
 - http://esnt.cea.fr/Phocea/page/index.php?id=22
- In case NUSHELLX is not operational currently
 - Meet with Angelo today to discuss/solve issues